Multibiometrics Enhancement Using Quality Measurement in Score Level Fusion

被引:3
作者
Artabaz, Saliha [1 ]
Sliman, Layth [2 ]
Dellys, Hachemi Nabil [1 ]
Benatchba, Karima [1 ]
Koudil, Mouloud [1 ]
机构
[1] Ecole Natl Super Informat ESI, Algiers, Algeria
[2] Ecole Ingenieur Generaliste Informat & Technol Nu, 30-32 Ave Republ, F-94800 Paris, France
来源
INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA 2016) | 2017年 / 557卷
关键词
Weighted fusion; User-specific; Tree structure; Cross-validation; INTEGRATION; PERFORMANCE;
D O I
10.1007/978-3-319-53480-0_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-biometrics is a solution which is sought to overcome functional and security deficiency in a baseline biometric configuration. In this paper, we propose a multi-biometrics scheme and we apply the cross validation between two databases to study the Equal Error Rate improvement of score level fusion. Our fusion function is constructed using an evolutionary GA on the XM2VTS score database. The best one is tested on a sub-sequence of the BioSecure Score database. As this database offers quality measurement, we transform our function into a weighted function with user-specific approach to study performance enhancement with quality integration. The results are significantly improved with a high confidence and quality measurement becomes inherent to reduce recognition errors.
引用
收藏
页码:260 / 267
页数:8
相关论文
共 18 条
  • [1] Performance of Multimodal Biometric Systems at Score Level Fusion
    AlMahafzah, Harbi
    AlRawashdeh, Ma'en Zaid
    [J]. WIRELESS COMMUNICATIONS, NETWORKING AND APPLICATIONS, WCNA 2014, 2016, 348 : 903 - 913
  • [2] Alonso-Fernandez F., 2015, ENCY BIOMETRICS, P1287
  • [3] Quality-Based Conditional Processing in Multi-Biometrics: Application to Sensor Interoperability
    Alonso-Fernandez, Fernando
    Fierrez, Julian
    Ramos, Daniel
    Gonzalez-Rodriguez, Joaquin
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2010, 40 (06): : 1168 - 1179
  • [4] [Anonymous], 2016, P 2016 IEEE WINT C A
  • [5] Anzar SM, 2013, ADV INTELL SYST, V177, P833
  • [6] On combining multi-normalization and ancillary measures for the optimal score level fusion of fingerprint and voice biometrics
    Anzar, Sharafudeen Thaha Mohammed
    Sathidevi, Puthumangalathu Savithri
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2014,
  • [7] Artabaz Saliha, 2015, Advances in Visual Informatics. 4th International Visual Informatics Conference, IVIC 2015. Proceedings: LNCS 9429, P166, DOI 10.1007/978-3-319-25939-0_15
  • [8] A Frequency-based Approach for Features Fusion in Fingerprint and Iris Multimodal Biometric Identification Systems
    Conti, Vincenzo
    Militello, Carmelo
    Sorbello, Filippo
    Vitabile, Salvatore
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2010, 40 (04): : 384 - 395
  • [9] Multi-biometric Score-Level Fusion and the Integration of the Neighbors Distance Ratio
    Damer, Naser
    Opel, Alexander
    [J]. IMAGE ANALYSIS AND RECOGNITION, ICIAR 2014, PT II, 2014, 8815 : 85 - 93
  • [10] Quality assessment of image-based biometric information
    El-Abed, Mohamad
    Charrier, Christophe
    Rosenberger, Christophe
    [J]. EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2015, : 1 - 15