Operational, umbral methods, Borel transform and negative derivative operator techniques

被引:10
作者
Dattoli, G. [1 ]
Licciardi, S. [1 ]
机构
[1] ENEA, Frascati Res Ctr, Via Enrico Fermi 45, I-00044 Rome, Italy
关键词
Umbral methods; operator theory; special functions; Borel transform; integral calculus; gamma function;
D O I
10.1080/10652469.2019.1684487
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Differintegral methods, namely those techniques using differential and integral operators on the same footing, currently exploited in calculus, provide a fairly unexhausted source of tools to be applied to a wide class of problems involving the theory of special functions and not only. The use of integral transforms of Borel type and the associated formalism will be shown to be an effective means, allowing a link between umbral and operational methods. We merge these two points of view to get a new and efficient method to obtain integrals of special functions and the summation of the associated generating functions as well.
引用
收藏
页码:192 / 220
页数:29
相关论文
共 43 条
[1]  
Abramowitz M., 1972, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, P685
[2]  
Andrews L. C., 1985, Special Functions for Engineers and Applied Mathematicians
[3]  
[Anonymous], 2008, Handbook of special functions
[4]  
Appel P., 1926, FONCTIONS HYPERGEOME
[5]  
Artioli M, 2018, J INTEGER SEQ, V21
[6]   The spherical Bessel and Struve functions and operational methods [J].
Babusci, D. ;
Dattoli, G. ;
Gorska, K. ;
Penson, K. A. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 238 :1-6
[7]   Symbolic methods for the evaluation of sum rules of Bessel functions [J].
Babusci, D. ;
Dattoli, G. ;
Gorska, K. ;
Penson, K. A. .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (07)
[8]  
Babusci D., 2019, Mathematical Methods for Physicists
[9]  
Bell E.T., 1938, AM MATH MON, V45, P414, DOI [10.1080/00029890.1938.11990829, DOI 10.1080/00029890.1938.11990829]
[10]  
Berndt B., 1985, RAMANUJANS NOTEBOOKS