共 50 条
Radiomics-Based Precision Phenotyping Identifies Unstable Coronary Plaques From Computed Tomography Angiography
被引:47
|作者:
Lin, Andrew
[1
,2
]
Kolossvary, Marton
[2
,3
]
Cadet, Sebastien
[4
]
McElhinney, Priscilla
[1
]
Goeller, Markus
[5
]
Han, Donghee
[4
]
Yuvaraj, Jeremy
[2
]
Nerlekar, Nitesh
[2
]
Slomka, Piotr J.
[6
]
Marwan, Mohamed
[5
]
Nicholls, Stephen J.
[2
,5
]
Achenbach, Stephan
Maurovich-Horvat, Pal
[7
,8
]
Wong, Dennis T. L.
[2
]
Dey, Damini
[1
]
机构:
[1] Cedars Sinai Med Ctr, Biomed Imaging Res Inst, Los Angeles, CA 90048 USA
[2] Monash Univ & MonashHeart, Victorian Heart Inst, Monash Cardiovasc Res Ctr, Monash Hlth, Melbourne, Vic, Australia
[3] Massachusetts Gen Hosp, Cardiovasc Imaging Res Ctr, Harvard Med Sch, Boston, MA USA
[4] Cedars Sinai Med Ctr, Dept Imaging & Med, Los Angeles, CA USA
[5] Friedrich Alexander Univ Erlangen Nurnberg, Fac Med, Dept Cardiol, Erlangen, Germany
[6] Cedars Sinai Med Ctr, Artificial Intelligence Med Program, Los Angeles, CA USA
[7] Semmelweis Univ, Med Imaging Ctr, Budapest, Hungary
[8] Semmelweis Univ, Heart & Vasc Ctr, MTA SE Cardiovasc Imaging Res Grp, Budapest, Hungary
关键词:
coronary computed tomography angiography;
coronary plaque;
machine learning;
myocardial infarction;
radiomics;
ACUTE CHEST-PAIN;
CT ANGIOGRAPHY;
VULNERABLE PLAQUE;
CULPRIT LESIONS;
ARTERY-DISEASE;
STENOSIS;
1ST;
FEATURES;
SOCIETY;
BURDEN;
D O I:
10.1016/j.jcmg.2021.11.016
中图分类号:
R5 [内科学];
学科分类号:
1002 ;
100201 ;
摘要:
OBJECTIVES The aim of this study was to precisely phenotype culprit and nonculprit lesions in myocardial infarction (MI) and lesions in stable coronary artery disease (CAD) using coronary computed tomography angiography (CTA)-based radiomic analysis. BACKGROUND It remains debated whether any single coronary atherosclerotic plaque within the vulnerable patient exhibits unique morphology conferring an increased risk of clinical events. METHODS A total of 60 patients with acute MI prospectively underwent coronary CTA before invasive angiography and were matched to 60 patients with stable CAD. For all coronary lesions, high-risk plaque (HRP) characteristics were qualitatively assessed, followed by semiautomated plaque quantification and extraction of 1,103 radiomic features. Machine learning models were built to examine the additive value of radiomic features for discriminating culprit lesions over and above HRP and plaque volumes. RESULTS Culprit lesions had higher mean volumes of noncalcified plaque (NCP) and low-density noncalcified plaque (LDNCP) compared with the highest-grade stenosis nonculprits and highest-grade stenosis stable CAD lesions (NCP: 138.1 mm(3) vs 110.7 mm(3) vs 102.7 mm(3); LDNCP: 14.2 mm(3) vs 9.8 mm(3) vs 8.4 mm(3); both Ptrend < 0.01). In multivariable linear regression adjusted for NCP and LDNCP volumes, 14.9% (164 of 1,103) of radiomic features were associated with culprits and 9.7% (107 of 1,103) were associated with the highest-grade stenosis nonculprits (critical P < 0.0007) when compared with highest-grade stenosis stable CAD lesions as reference. Hierarchical clustering of significant radiomic features identified 9 unique data clusters (latent phenotypes): 5 contained radiomic features specific to culprits, 1 contained features specific to highest-grade stenosis nonculprits, and 3 contained features associated with either lesion type. Radiomic features provided incremental value for discriminating culprit lesions when added to a machine learning model containing HRP and plaque volumes (area under the receiver-operating characteristic curve 0.86 vs 0.76; P = 0.004). CONCLUSIONS Culprit lesions and highest-grade stenosis nonculprit lesions in MI have distinct radiomic signatures compared with lesions in stable CAD. Within the vulnerable patient may exist individual vulnerable plaques identifiable by coronary CTA-based precision phenotyping. (C) 2022 by the American College of Cardiology Foundation.
引用
收藏
页码:859 / 871
页数:13
相关论文