Geometry and entanglement entropy of surfaces in loop quantum gravity

被引:5
作者
Grueber, David [1 ]
Sahlmann, Hanno [1 ]
Zilker, Thomas [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg FAU, Inst Quantum Grav, Staudtstr 7-B2, D-91058 Erlangen, Germany
来源
PHYSICAL REVIEW D | 2018年 / 98卷 / 06期
关键词
BLACK-HOLE ENTROPY; TRIAD OPERATOR QUANTIZATION; SPIN DYNAMICS QSD; CONSISTENCY CHECK; LENGTH OPERATOR; VOLUME; AREA;
D O I
10.1103/PhysRevD.98.066009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In loop quantum gravity, the area element of embedded spatial surfaces is given by a well-defined operator. We further characterize the quantized geometry of such surfaces by proposing definitions for operators quantizing scalar curvature and mean curvature. By investigating their properties, we shed light on the nature of the geometry of surfaces in loop quantum gravity. We also investigate the entanglement entropy across surfaces in the case where spin network edges are running within the surface. We observe that, on a certain class of states, the entropy gradient across a surface is proportional to the mean curvature. In particular, the entanglement entropy is constant for small deformations of a minimal surface in this case.
引用
收藏
页数:15
相关论文
共 36 条
  • [1] Curvature operator for loop quantum gravity
    Alesci, E.
    Assanioussi, M.
    Lewandowski, J.
    [J]. PHYSICAL REVIEW D, 2014, 89 (12)
  • [2] Background independent quantum giravity: a status report
    Ashtekar, A
    Lewandowski, J
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (15) : R53 - R152
  • [3] Quantum theory of geometry: I. Area operators
    Ashtekar, A
    Lewandowski, J
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (1A) : A55 - A81
  • [4] Quantum geometry and black hole entropy
    Ashtekar, A
    Baez, J
    Corichi, A
    Krasnov, K
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (05) : 904 - 907
  • [5] Ashtekar A., 1998, Adv. Theor. Math. Phys., V1, P388, DOI [10.4310/ATMP.1997.v1.n2.a8, DOI 10.4310/ATMP.1997.V1.N2.A8]
  • [6] Gluing polyhedra with entanglement in loop quantum gravity
    Baytas, Bekir
    Bianchi, Eugenio
    Yokomizo, Nelson
    [J]. PHYSICAL REVIEW D, 2018, 98 (02)
  • [7] Discreteness of the Volume of Space from Bohr-Sommerfeld Quantization
    Bianchi, Eugenio
    Haggard, Hal M.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (01)
  • [8] Polyhedra in loop quantum gravity
    Bianchi, Eugenio
    Dona, Pietro
    Speziale, Simone
    [J]. PHYSICAL REVIEW D, 2011, 83 (04):
  • [9] The length operator in Loop Quantum Gravity
    Bianchi, Eugenio
    [J]. NUCLEAR PHYSICS B, 2009, 807 (03) : 591 - 624
  • [10] DUST AS A STANDARD OF SPACE AND TIME IN CANONICAL QUANTUM-GRAVITY
    BROWN, JD
    KUCHAR, KV
    [J]. PHYSICAL REVIEW D, 1995, 51 (10): : 5600 - 5629