Solving a nonlinear fractional differential equation using Chebyshev wavelets

被引:212
作者
Li, Yuanlu [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Inst Informat & Syst Sci, Nanjing 210044, Peoples R China
关键词
Operational matrix; Chebyshev wavelets; Fractional calculus; Nonlinear fractional differential equations; INTEGRODIFFERENTIAL EQUATIONS; COMPUTATIONAL METHOD; OPERATIONAL MATRIX; NUMERICAL-SOLUTION; LINEAR-SYSTEMS; FREDHOLM;
D O I
10.1016/j.cnsns.2009.09.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Chebyshev wavelet operational matrix of the fractional integration is derived and used to solve a nonlinear fractional differential equations. Some examples are included to demonstrate the validity and applicability of the technique. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2284 / 2292
页数:9
相关论文
共 30 条
[1]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[2]   Solution of fractional integro-differential equations by using fractional differential transform method [J].
Arikoglu, Aytac ;
Ozkol, Ibrahim .
CHAOS SOLITONS & FRACTALS, 2009, 40 (02) :521-529
[3]   Numerical solution of nonlinear Volterra-Fredholm integro-differential equations via direct method using triangular functions [J].
Babolian, E. ;
Masouri, Z. ;
Hatamadeh-Varmazyar, S. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (02) :239-247
[4]   Numerical solution of stiff systems from nonlinear dynamics using single-term Haar wavelet series [J].
Bujurke, N. M. ;
Salimath, C. S. ;
Shiralashetti, S. C. .
NONLINEAR DYNAMICS, 2008, 51 (04) :595-605
[5]   An application of single-term Haar wavelet series in the solution of nonlinear oscillator equations [J].
Bujurke, N. M. ;
Shiralashetti, S. C. ;
Salimath, C. S. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 227 (02) :234-244
[6]   Haar wavelet method for solving lumped and distributed-parameter systems [J].
Chen, CF ;
Hsiao, CH .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1997, 144 (01) :87-94
[8]   Numerical methods for multi-term fractional (arbitrary) orders differential equations [J].
El-Mesiry, AEM ;
El-Sayed, AMA ;
El-Saka, HAA .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 160 (03) :683-699
[9]   Application of generalized differential transform method to multi-order fractional differential equations [J].
Erturk, Vedat Suat ;
Momani, Shaher ;
Odibat, Zaid .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (08) :1642-1654
[10]   DAMPING DESCRIPTION INVOLVING FRACTIONAL OPERATORS [J].
GAUL, L ;
KLEIN, P ;
KEMPLE, S .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1991, 5 (02) :81-88