Application of data mining and evolutionary optimization in catalyst discovery and high-throughput experimentation techniques, strategies, and software

被引:9
|
作者
Ohrenberg, A
von Törne, C
Schuppert, A
Knab, B
机构
来源
QSAR & COMBINATORIAL SCIENCE | 2005年 / 24卷 / 01期
关键词
catalysis; data mining; design of experiments; evolutionary optimization; high-throughput screening;
D O I
10.1002/qsar.200420059
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Data-mining and evolutionary optimization techniques are powerful tools to improve the efficiency of high-throughput experimentation (HTE) to discover new materials, drugs, or catalysts. The parameter space of screening experiments is usually high-dimensional and the parameters are possibly discrete. The response surface of the screened systems can be very rugged, characterized by smooth planes as well as steep and narrow ascents of abundant sub-optima. These conditions make exclusive use of classical statistical design and data analysis inappropriate. Evolutionary strategies, neural networks, and data mining may be an efficient alternative. Using two examples, we show the practical benefit of design strategies which combine different techniques. The selection of the methods depends on the nature of the respective HTE problem. An optimal design strategy makes HTE more efficient, and reduces research costs and time to market. Furthermore, the early application of design strategy enables reliable statements about the feasibility of the research project.
引用
收藏
页码:29 / 37
页数:9
相关论文
共 34 条
  • [1] Data flow modeling, data mining and QSAR in high-throughput discovery of functional nanomaterials
    Yang, Yang
    Lin, Tian
    Weng, Xiao L.
    Darr, Jawwad A.
    Wang, Xue Z.
    COMPUTERS & CHEMICAL ENGINEERING, 2011, 35 (04) : 671 - 678
  • [2] Information flow modeling and data mining in high-throughput discovery of functional nanomaterials
    Yang, Yang
    Wang, Xue
    19TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2009, 26 : 135 - 140
  • [3] High-throughput experimentation as a tool in catalyst design for the reductive amination of benzaldehyde
    Gomez, S
    Peters, JA
    van der Waal, JC
    Maschmeyer, T
    APPLIED CATALYSIS A-GENERAL, 2003, 254 (01) : 77 - 84
  • [4] High-throughput strategies for the discovery and engineering of enzymes for biocatalysis
    Jacques, Philippe
    Bechet, Max
    Bigan, Muriel
    Caly, Delphine
    Chataigne, Gabrielle
    Coutte, Francois
    Flahaut, Christophe
    Heuson, Egon
    Leclere, Valerie
    Lecouturier, Didier
    Phalip, Vincent
    Ravallec, Rozenn
    Dhulster, Pascal
    Froidevaux, Renato
    BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2017, 40 (02) : 161 - 180
  • [5] High-throughput strategies for the discovery and engineering of enzymes for biocatalysis
    Philippe Jacques
    Max Béchet
    Muriel Bigan
    Delphine Caly
    Gabrielle Chataigné
    François Coutte
    Christophe Flahaut
    Egon Heuson
    Valérie Leclère
    Didier Lecouturier
    Vincent Phalip
    Rozenn Ravallec
    Pascal Dhulster
    Rénato Froidevaux
    Bioprocess and Biosystems Engineering, 2017, 40 : 161 - 180
  • [6] High-throughput and data mining with ab initio methods
    Morgan, D
    Ceder, G
    Curtarolo, S
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2005, 16 (01) : 296 - 301
  • [7] High Throughput Strategies for the Discovery and Optimization of Catalytic Reactions
    Isbrandt, Eric S.
    Sullivan, Ryan J.
    Newman, Stephen G.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (22) : 7180 - 7191
  • [8] Complex-Solid-Solution Electrocatalyst Discovery by Computational Prediction and High-Throughput Experimentation**
    Batchelor, Thomas A. A.
    Loeffler, Tobias
    Xiao, Bin
    Krysiak, Olga A.
    Strotkoetter, Valerie
    Pedersen, Jack K.
    Clausen, Christian M.
    Savan, Alan
    Li, Yujiao
    Schuhmann, Wolfgang
    Rossmeisl, Jan
    Ludwig, Alfred
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (13) : 6932 - 6937
  • [9] High-Throughput Strategies for the Discovery of Anticancer Drugs by Targeting Transcriptional Reprogramming
    Huang, Lijun
    Yi, Xiaohong
    Yu, Xiankuo
    Wang, Yumei
    Zhang, Chen
    Qin, Lixia
    Guo, Dale
    Zhou, Shiyi
    Zhang, Guanbin
    Deng, Yun
    Bao, Xilinqiqige
    Wang, Dong
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [10] Optimization of High-Throughput Methyltransferase Assays for the Discovery of Small Molecule Inhibitors
    Dong, Guangping
    Yasgar, Adam
    Peterson, Darrell L.
    Zakharov, Alexey
    Talley, Daniel
    Cheng, Ken Chih-Chien
    Jadhav, Ajit
    Simeonov, Anton
    Huang, Rong
    ACS COMBINATORIAL SCIENCE, 2020, 22 (08) : 422 - 432