Planar domain parameterization for isogeometric analysis based on Teichmuller mapping

被引:56
作者
Nian, Xianshun [1 ]
Chen, Falai [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
关键词
Parameterization; Isogeometric analysis; Teichmulller mapping; ADMM; COMPUTATIONAL DOMAIN; VOLUME PARAMETERIZATION; CONSTRUCTION; BOUNDARY; NURBS; CAD;
D O I
10.1016/j.cma.2016.07.035
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Given the boundary curve of a planar domain, finding a parametric spline representation for the domain is called domain parameterization. A good parameterization of the computational domain plays a key role in isogeometric analysis since it influences the accuracy of the subsequent analysis. In this paper, we propose a new approach for planar domain parameterization based on Teichmuller map-a special map in the class of quasi-conformal map. Under given correspondence of four boundary curves, a unique Teichmuller map between a unit square and a computational domain can be obtained, which guarantees a bijection map and minimizes the maximal conformality distortion. We propose an efficient iterative algorithm to compute the Teichmuller map based on alternating direction method of multipliers (ADMM). Experimental results show that our method can produce more uniform parameterization and increase the accuracy as well as decrease the condition numbers of the stiffness matrices in isogeometric analysis than other state of the art approaches. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:41 / 55
页数:15
相关论文
共 38 条
[1]  
Aigner M, 2009, LECT NOTES COMPUT SC, V5654, P19, DOI 10.1007/978-3-642-03596-8_2
[2]  
[Anonymous], LECT QUASICONFORMAL
[3]   A fully "locking-free" isogeometric approach for plane linear elasticity problems: A stream function formulation [J].
Auricchio, F. ;
da Veiga, L. Beirao ;
Buffa, A. ;
Lovadina, C. ;
Reali, A. ;
Sangalli, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 197 (1-4) :160-172
[4]   Conformal flattening by curvature prescription and metric scaling [J].
Ben-Chen, Mirela ;
Gotsman, Craig ;
Bunin, Guy .
COMPUTER GRAPHICS FORUM, 2008, 27 (02) :449-458
[5]   Isogeometric shell analysis: The Reissner-Mindlin shell [J].
Benson, D. J. ;
Bazilevs, Y. ;
Hsu, M. C. ;
Hughes, T. J. R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :276-289
[6]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[7]   Isogeometric analysis in electromagnetics: B-splines approximation [J].
Buffa, A. ;
Sangalli, G. ;
Vazquez, R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (17-20) :1143-1152
[8]  
DARIPA P, 1993, J COMPUT PHYS, V106, P355
[9]   Planar domain parameterization with THB-splines [J].
Falini, Antonella ;
Speh, Jaka ;
Juettler, Bert .
COMPUTER AIDED GEOMETRIC DESIGN, 2015, 35-36 :95-108
[10]   Discrete Coons patches [J].
Farin, G ;
Hansford, D .
COMPUTER AIDED GEOMETRIC DESIGN, 1999, 16 (07) :691-700