Regularity lifting of weak solutions for nonlinear sub-Laplace equations on homogeneous groups

被引:1
作者
Feng, Xiaojing [1 ]
Niu, Pengcheng [1 ]
机构
[1] Northwestern Polytech Univ, Minist Educ, Dept Appl Math, Key Lab Space Appl Phys & Chem, Xian 710129, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Regularity lifting; Homogeneous group; Vector fields; Bootstrap method; YAMABE-TYPE EQUATIONS; POSITIVE SOLUTIONS; CRITICAL EXPONENT; SPACES;
D O I
10.1007/s00013-012-0377-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a homogeneous group, and let X-1, X-2, ... , X-m be left invariant real vector fields being homogeneous of degree one on G. We consider the following Dirichlet boundary value problem of the sub-Laplace equation involving the critical exponent and singular term: {-Sigma(m)(j=1) X-j(2) u(x) - a/parallel to x parallel to(nu) u(x) = uQ+2/Q-2 (x), x is an element of Omega u(x) = 0, x is an element of partial derivative Omega, where O subset of G is a bounded domain with smooth boundary and 0 is an element of O, Q is the homogeneous dimension of G, a is an element of R, nu < 2. We boost u to L-p(Omega) for any 1 <= p <= 8 if u is an element of S-0(1,2) (Omega) is a weak solution of the problem above.
引用
收藏
页码:361 / 371
页数:11
相关论文
共 16 条
[1]   ON A NONLINEAR ELLIPTIC EQUATION INVOLVING THE CRITICAL SOBOLEV EXPONENT - THE EFFECT OF THE TOPOLOGY OF THE DOMAIN [J].
BAHRI, A ;
CORON, JM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (03) :253-294
[2]  
Bonfiglioli A, 2007, SPRINGER MONOGR MATH, P1
[3]  
Bramanti M., 2000, Rend. Semin. Mat. Torino, V58, P389
[4]   Positive solutions of Yamabe-type equations on the Heisenberg group [J].
Brandolini, L ;
Rigoli, M ;
Setti, AG .
DUKE MATHEMATICAL JOURNAL, 1998, 91 (02) :241-296
[5]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[6]  
Chen W., 2010, Methods on Nonlinear Elliptic Equations
[7]   Semilinear dirichlet problem involving critical exponent for the Kohn Laplacian. [J].
Citti, G .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1995, 169 :375-392
[8]  
FOLLAND GB, 1975, ARK MAT, V13, P161, DOI 10.1007/BF02386204
[9]  
Garofalo N, 1996, COMMUN PUR APPL MATH, V49, P1081, DOI 10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO
[10]  
2-A