On a class of integro-differential equations modeling complex systems with nonlinear interactions

被引:22
作者
Arlotti, L. [2 ]
De Angelis, E. [1 ]
Fermo, L. [1 ]
Lachowicz, M. [3 ]
Bellomo, N. [1 ]
机构
[1] Politecn Torino, Dipartimento Matemat, Turin, Italy
[2] Univ Udine, Dipartimento Ingn Civile, I-33100 Udine, Italy
[3] Univ Warsaw, Inst Appl Math & Mech, Warsaw, Poland
关键词
Complexity; Kinetic theory; Cauchy problem; Nonlinear interactions; MULTICELLULAR GROWING SYSTEMS; BIOLOGICAL TISSUE MODELS; LEARNING DYNAMICS; ACTIVE PARTICLES; KINETIC-MODELS; COMPETITION; BEHAVIOR;
D O I
10.1016/j.aml.2011.09.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work deals with the qualitative analysis of the initial value problem for a class of large systems of interacting entities in the framework of the mathematical kinetic theory for active particles. The contents are specifically focused on the case where the system interacts with the outer environment and the entities are subject to nonlinearly additive interactions. (C) 2011 Published by Elsevier Ltd
引用
收藏
页码:490 / 495
页数:6
相关论文
共 24 条
[1]  
AJMONEMARSAN G, 2008, KINET RELAT MOD, V1, P249
[2]   On the initial value problem of a class of models of the kinetic theory for active particles [J].
Arlotti, L. ;
De Angelis, E. .
APPLIED MATHEMATICS LETTERS, 2011, 24 (03) :257-263
[3]   Solution of a new class of nonlinear kinetic models of population dynamics [J].
Arlotti, L ;
Bellomo, N .
APPLIED MATHEMATICS LETTERS, 1996, 9 (02) :65-70
[4]   Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study [J].
Ballerini, M. ;
Calbibbo, N. ;
Candeleir, R. ;
Cavagna, A. ;
Cisbani, E. ;
Giardina, I. ;
Lecomte, V. ;
Orlandi, A. ;
Parisi, G. ;
Procaccini, A. ;
Viale, M. ;
Zdravkovic, V. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (04) :1232-1237
[5]   Toward a mathematical theory of living systems focusing on developmental biology and evolution: A review and perspectives [J].
Bellomo, N. ;
Carbonaro, B. .
PHYSICS OF LIFE REVIEWS, 2011, 8 (01) :1-18
[6]   On the modeling of nonlinear interactions in large complex systems [J].
Bellomo, N. ;
Bianca, C. ;
Mongiovi, M. S. .
APPLIED MATHEMATICS LETTERS, 2010, 23 (11) :1372-1377
[7]   Modeling the hiding-learning dynamics in large living systems [J].
Bellomo, N. .
APPLIED MATHEMATICS LETTERS, 2010, 23 (08) :907-911
[8]   Bifurcation analysis for a nonlinear system of integro-differential equations modelling tumor-immune cells competition [J].
Bellomo, N ;
Firmani, B ;
Guerri, L .
APPLIED MATHEMATICS LETTERS, 1999, 12 (02) :39-44
[9]   Complex multicellular systems and immune competition: New paradigms looking for a mathematical theory [J].
Bellomo, Nicola ;
Forni, Guido .
MULTISCALE MODELING OF DEVELOPMENTAL SYSTEMS, 2008, 81 :485-502
[10]   MULTISCALE BIOLOGICAL TISSUE MODELS AND FLUX-LIMITED CHEMOTAXIS FOR MULTICELLULAR GROWING SYSTEMS [J].
Bellomo, Nicola ;
Bellouquid, Abdelghani ;
Nieto, Juan ;
Soler, Juan .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (07) :1179-1207