Artificial Intelligence Applied in the Multi-label Problem of Chronic Pelvic Pain Diagnosing

被引:2
作者
Oliverio, Vinicius [1 ]
Poli-Neto, Omero Bendicto [1 ]
机构
[1] Univ Sao Paulo, BR-14049900 Ribeirao Preto, SP, Brazil
来源
UBIQUITOUS COMPUTING AND AMBIENT INTELLIGENCE, UCAMI 2016, PT I | 2016年 / 10069卷
关键词
Artificial intelligence; Machine learning; Chronic pelvic pain; Diagnosis; Multi-label;
D O I
10.1007/978-3-319-48746-5_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Chronic pelvic pain is a common clinical condition with negative consequences in many aspects of women's life. The clinical presentation is heterogeneous and the involvement of several body systems impairs the identification of the exact etiology of the problem. At the same time, a clinical treatment of good quality depends on the professional and the learning process is slow. The goal of the paper is to show techniques used to create an artificial intelligence system capable of indicating the probable causes of this condition in order to help the doctors in the diagnosing process. This system uses a supervised learning algorithm along with multi-label problem modeling techniques and attribute selection algorithms to achieve the desired goal.
引用
收藏
页码:80 / 85
页数:6
相关论文
共 16 条
  • [1] [Anonymous], 1999, Technometrics, DOI DOI 10.2307/1269742
  • [2] [Anonymous], 2003, PROC 4 INT SOC MUSIC
  • [3] [Anonymous], 2004, OBSTET GINECOL, V103, P589, DOI 10.1097/00006250-200403000-00045
  • [4] Chronic pain and frequent use of health care
    Blyth, FM
    March, LM
    Brnabic, AJM
    Cousins, MJ
    [J]. PAIN, 2004, 111 (1-2) : 51 - 58
  • [5] Learning multi-label scene classification
    Boutell, MR
    Luo, JB
    Shen, XP
    Brown, CM
    [J]. PATTERN RECOGNITION, 2004, 37 (09) : 1757 - 1771
  • [6] de Carvalho ACPLF, 2009, STUD COMPUT INTELL, V205, P177
  • [7] Hall M., 2009, SIGKDD EXPLORATIONS, V11, P10, DOI [DOI 10.1145/1656274.1656278, 10.1145/1656274.1656278]
  • [8] Hall M. A., 1999, Proceedings of the Twelfth International Florida AI Research Society Conference, P235
  • [9] Haykin S., 1998, Neural Networks: A. Comprehensive Foundation
  • [10] Howard FM, 2003, OBSTET GYNECOL, V101, P594, DOI 10.1016/S0029-7844(02)02723-0