Pairs of positive periodic solutions of second order nonlinear equations with indefinite weight

被引:29
作者
Boscaggin, Alberto [2 ]
Zanolin, Fabio [1 ]
机构
[1] Univ Udine, Dept Math & Comp Sci, I-33100 Udine, Italy
[2] SISSA, ISAS, I-34136 Trieste, Italy
关键词
Periodic solutions; Necessary conditions; Critical points; Pairs of positive solutions; BOUNDARY-VALUE-PROBLEMS; DIFFERENTIAL-EQUATIONS; ELLIPTIC PROBLEMS; EXISTENCE; OSCILLATION; DYNAMICS; THEOREM;
D O I
10.1016/j.jde.2011.09.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the problem of the existence and multiplicity of positive periodic solutions to the scalar ODE u '' + lambda a(t)g(u) = 0, lambda > 0, where g(x) is a positive function on R(+), superlinear at zero and sublinear at infinity, and a(t) is a T-periodic and sign indefinite weight with negative mean value. We first show the nonexistence of solutions for some classes of nonlinearities g(x) when lambda is small. Then, using critical point theory, we prove the existence of at least two positive T-periodic solutions for lambda large. Some examples are also provided. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2900 / 2921
页数:22
相关论文
共 37 条
[1]   ELEMENTARY CRITICAL-POINT THEORY AND PERTURBATIONS OF ELLIPTIC BOUNDARY-VALUE PROBLEMS AT RESONANCE [J].
AHMAD, S ;
LAZER, AC ;
PAUL, JL .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1976, 25 (10) :933-944
[2]   ON SEMILINEAR ELLIPTIC-EQUATIONS WITH INDEFINITE NONLINEARITIES [J].
ALAMA, S ;
TARANTELLO, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (04) :439-475
[3]   A priori bounds and multiple solutions for superlinear indefinite elliptic problems [J].
Amann, H ;
Lopez-Gomez, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 146 (02) :336-374
[4]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[5]  
[Anonymous], 1972, J. Funct. Anal, DOI DOI 10.1016/0022-1236(72)90074-2
[6]  
[Anonymous], 1989, APPL MATH SCI
[7]  
[Anonymous], 2000, TOPOL METHOD NONL AN
[8]   THE ASYMPTOTIC-BEHAVIOR OF THE SOLUTIONS OF DEGENERATE PARABOLIC EQUATIONS [J].
BANDLE, C ;
POZIO, MA ;
TESEI, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 303 (02) :487-501
[9]   EXISTENCE AND UNIQUENESS OF SOLUTIONS OF NONLINEAR NEUMANN PROBLEMS [J].
BANDLE, C ;
POZIO, MA ;
TESEI, A .
MATHEMATISCHE ZEITSCHRIFT, 1988, 199 (02) :257-278
[10]  
Berestycki H., 1995, NODEA-NONLINEAR DIFF, V2, P553, DOI [DOI 10.1007/BF01210623, 10.1007/BF01210623]