Nematic liquid crystals used to control photo-thermal effects in gold nanoparticles

被引:3
作者
Pezzi, Luigia [1 ]
De Sio, Luciano [2 ]
Palermo, Giovanna [1 ]
Veltri, Alessandro [3 ]
Placido, Tiziana [4 ,5 ]
Lucia Curri, Maria [4 ,5 ]
Tabiryan, Nelson [2 ]
Umeton, Cesare [1 ]
机构
[1] Univ Calabria, Dept Phys, LICRYL Liquid Crystals Lab, I-87036 Arcavacata Di Rende, CS, Italy
[2] Beam Engn Adv Measurements Co, Winter Pk, FL 32789 USA
[3] Univ San Francisco Quito, Colegio Ciencias & Ingn, Quito, Ecuador
[4] Univ Bari, Dip Chim, Via Orabona 4, I-70126 Bari, Italy
[5] CNR, IPCF, Sez Bari, Dip Chim, Via Orabona 4, I-70126 Bari, Italy
来源
EMERGING LIQUID CRYSTAL TECHNOLOGIES XI | 2016年 / 9769卷
关键词
NLC; Nanoparticles; thermal effect; REFRACTIVE-INDEXES; MODEL;
D O I
10.1117/12.2216201
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report on photo-thermal effects observed in gold nanoparticles (GNPs) dispersed in Nematic Liquid Crystals (NLCs). Under a suitable optical radiation, GNPs exhibit a strong light absorption/scattering; the effect depends on the refractive index of the medium surrounding the nanoparticles, which can be electrically or optically tuned. In this way, the system represents an ideal nano-source of heat, remotely controllable by light to adjust the temperature at the nanoscale. Photo-induced temperature variations in GNPs dispersed in NLCs have been investigated by implementing a theoretical model based on the thermal heating equation applied to an anisotropic medium; theoretical predictions have been compared with results of experiments carried out in a NLC medium hosting GNPs. Both theory and experiments represent a step forward to understand the physics of heat production at the nanoscale, with applications that range from photonics to nanomedicine.
引用
收藏
页数:9
相关论文
共 29 条
[1]   THERMAL-CONDUCTIVITY OF THE NEMATIC LIQUID-CRYSTAL 4-N-PENTYL-4'-CYANOBIPHENYL [J].
AHLERS, G ;
CANNELL, DS ;
BERGE, LI ;
SAKURAI, S .
PHYSICAL REVIEW E, 1994, 49 (01) :545-553
[2]   Heat generation in plasmonic nanostructures: Influence of morphology [J].
Baffou, G. ;
Quidant, R. ;
Girard, C. .
APPLIED PHYSICS LETTERS, 2009, 94 (15)
[3]   Thermo-plasmonics: using metallic nanostructures as nano-sources of heat [J].
Baffou, Guillaume ;
Quidant, Romain .
LASER & PHOTONICS REVIEWS, 2013, 7 (02) :171-187
[4]   Thermocapillary valve for droplet production and sorting [J].
Baroud, Charles N. ;
Delville, Jean-Pierre ;
Gallaire, Francois ;
Wunenburger, Regis .
PHYSICAL REVIEW E, 2007, 75 (04)
[5]  
Blinov L.M., 2010, STRUCTURE PROPERTIES, V123
[6]   Photothermal imaging of nanometer-sized metal particles among scatterers [J].
Boyer, D ;
Tamarat, P ;
Maali, A ;
Lounis, B ;
Orrit, M .
SCIENCE, 2002, 297 (5584) :1160-1163
[7]   Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes [J].
Cao, Linyou ;
Barsic, David N. ;
Guichard, Alex R. ;
Brongersma, Mark L. .
NANO LETTERS, 2007, 7 (11) :3523-3527
[8]   Kogelnik-like model for the diffraction efficiency of POLICRYPS gratings [J].
Caputo, R ;
Veltri, A ;
Umeton, C ;
Sukhov, AV .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2005, 22 (04) :735-742
[9]  
Carslaw HS., 1986, CONDUCTION HEAT SOLI
[10]   Targeted hyperthermia using metal nanoparticles [J].
Cherukuri, Paul ;
Glazer, Evan S. ;
Curleya, Steven A. .
ADVANCED DRUG DELIVERY REVIEWS, 2010, 62 (03) :339-345