Object-based forest gaps classification using airborne LiDAR data

被引:14
|
作者
Mao, Xuegang [1 ]
Hou, Jiyu [2 ]
机构
[1] Northeast Forestry Univ, Sch Forestry, Harbin 150040, Heilongjiang, Peoples R China
[2] Nanjing Univ, Sch Geog & Oceanog Sci, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Forest gap; Scale segmentation; Classification feature; LiDAR; CHM; Object based; Machine learning; RAIN-FOREST; CANOPY GAPS; IMAGERY; ACCURACY;
D O I
10.1007/s11676-018-0652-3
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Object-based classification differentiates forest gaps from canopies at large regional scale by using remote sensing data. To study the segmentation and classification processes of object-based forest gaps classification at a regional scale, we sampled a natural secondary forest in northeast China at Maoershan Experimental Forest Farm. Airborne light detection and ranging (LiDAR; 3.7 points/m(2)) data were collected as the original data source and the canopy height model (CHM) and topographic dataset were extracted from the LiDAR data. The accuracy of object-based forest gaps classification depends on previous segmentation. Thus our first step was to define 10 different scale parameters in CHM image segmentation. After image segmentation, the machine learning classification method was used to classify three kinds of object classes, namely, forest gaps, tree canopies, and others. The common support vector machine (SVM) classifier with the radial basis function kernel (RBF) was first adopted to test the effect of classification features (vegetation height features and some typical topographic features) on forest gap classification. Then the different classifiers (KNN, Bayes, decision tree, and SVM with linear kernel) were further adopted to compare the effect of classifiers on machine learning forest gaps classification. Segmentation accuracy and classification accuracy were evaluated by using Moller's method and confusion metrics, respectively. The scale parameter had a significant effect on object-based forest gap segmentation and classification. Classification accuracies at different scales revealed that there were two optimal scales (10 and 20) that provided similar accuracy, with the scale of 10 yielding slightly greater accuracy than 20. The accuracy of the classification by using combination of height features and SVM classifier with linear kernel was 91% at the optimal scale parameter of 10, and it was highest comparing with other classification classifiers, such as SVM RBF (90%), Decision Tree (90%), Bayes (90%), or KNN (87%). The classifiers had no significant effect on forest gap classification, but the fewer parameters in the classifier equation and higher speed of operation probably lead to a higher accuracy of final classifications. Our results confirm that object-based classification can extract forest gaps at a large regional scale with appropriate classification features and classifiers using LiDAR data. We note, however, that final satisfaction of forest gap classification depends on the determination of optimal scale (s) of segmentation.
引用
收藏
页码:617 / 627
页数:11
相关论文
共 50 条
  • [1] Object-based forest gaps classification using airborne LiDAR data
    Xuegang Mao
    Jiyu Hou
    Journal of Forestry Research, 2019, 30 : 617 - 627
  • [2] Object-based forest gaps classification using airborne LiDAR data
    Xuegang Mao
    Jiyu Hou
    Journal of Forestry Research, 2019, 30 (02) : 617 - 627
  • [3] Object-Based Tree Species Classification Using Airborne Hyperspectral Images and LiDAR Data
    Wu, Yanshuang
    Zhang, Xiaoli
    FORESTS, 2020, 11 (01):
  • [4] Feature Assessment in Object-based Forest Classification using Airborne LiDAR Data and High Spatial Resolution Satellite Imagery
    Zhang, Zhenyu
    Liu, Xiaoye
    Wright, Wendy
    2014 THIRD INTERNATIONAL WORKSHOP ON EARTH OBSERVATION AND REMOTE SENSING APPLICATIONS (EORSA 2014), 2014,
  • [5] Synergistic use of QuickBird multispectral imagery and LIDAR data for object-based forest species classification
    Ke, Yinghai
    Quackenbush, Lindi J.
    Im, Jungho
    REMOTE SENSING OF ENVIRONMENT, 2010, 114 (06) : 1141 - 1154
  • [6] Object-Based Land Cover Classification Using Airborne Lidar and Different Spectral Images
    Teo, Tee-Ann
    Huang, Chun-Hsuan
    TERRESTRIAL ATMOSPHERIC AND OCEANIC SCIENCES, 2016, 27 (04): : 491 - 504
  • [7] OBJECT-BASED FUSION OF HYPERSPECTRAL AND LIDAR DATA FOR CLASSIFICATION OF URBAN AREAS
    Marpu, Prashanth Reddy
    Martinez, Sergio Sanchez
    2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2015,
  • [8] Object-Based Analysis of Airborne LiDAR Data for Building Change Detection
    Pang, Shiyan
    Hu, Xiangyun
    Wang, Zizheng
    Lu, Yihui
    REMOTE SENSING, 2014, 6 (11) : 10733 - 10749
  • [9] Evaluation of the contribution of LiDAR data and postclassification procedures to object-based classification accuracy
    Styers, Diane M.
    Moskal, L. Monika
    Richardson, Jeffrey J.
    Halabisky, Meghan A.
    JOURNAL OF APPLIED REMOTE SENSING, 2014, 8
  • [10] Object-Based Tree Species Classification in Urban Ecosystems Using LiDAR and Hyperspectral Data
    Zhang, Zhongya
    Kazakova, Alexandra
    Moskal, Ludmila Monika
    Styers, Diane M.
    FORESTS, 2016, 7 (06):