Binary Darboux transformation and new soliton solutions of the focusing nonlocal nonlinear Schrodinger equation

被引:8
作者
Xu, Chuanxin [1 ]
Xu, Tao [1 ,2 ]
Meng, Dexin [1 ]
Zhang, Tianli [1 ]
An, Licong [1 ]
Han, Lijun [1 ]
机构
[1] China Univ Petr, Coll Sci, Beijing 102249, Peoples R China
[2] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R China
基金
中国国家自然科学基金;
关键词
Soliton solutions; Nonlocal nonlinear Schrodinger equation; Darboux transformation; Asymptotic analysis; Soliton interactions; INVERSE SCATTERING TRANSFORM; DYNAMICS; PARITY;
D O I
10.1016/j.jmaa.2022.126514
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the focusing nonlocal nonlinear Schrodinger (NNLS) equation, we establish the N-fold binary Darboux transformation (BDT) and give a complete proof on the form invariance of Lax pair. Then, by choosing the tanh-function solution as a seed, we implement the one-fold BDT and obtain two new types of soliton solutions including the exponential and exponential-and-rational types. Both two types of solutions are nonsingular with a wide range of parameter regimes, and they can describe the elastic soliton interactions over the nonzero background with the asymptotic phase difference pi as x -> +/- 8. Also, we derive the expressions of all asymptotic solitons and discuss the parametric conditions for different soliton profiles. It turns out that each asymptotic soliton can display both the dark and antidark soliton profiles or exhibit no spatial localization, which confirms that the focusing NNLS equation admits a rich variety of soliton interactions like the defocusing NNLS case. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 63 条
[1]   INVERSE SCATTERING TRANSFORM FOR THE NONLOCAL REVERSE SPACE-TIME NONLINEAR SCHRODINGER EQUATION [J].
Ablowitz, M. J. ;
Feng, Bao-Feng ;
Luo, Xu-Dan ;
Musslimani, Z. H. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2018, 196 (03) :1241-1267
[2]   Integrable space-time shifted nonlocal nonlinear equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICS LETTERS A, 2021, 409
[3]   Integrable nonlocal asymptotic reductions of physically significant nonlinear equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (15)
[4]   Reverse Space-Time Nonlocal Sine-Gordon/Sinh-Gordon Equations with Nonzero Boundary Conditions [J].
Ablowitz, Mark J. ;
Feng, Bao-Feng ;
Luo, Xu-Dan ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2018, 141 (03) :267-307
[5]   Inverse scattering transform for the nonlocal nonlinear Schrodinger equation with nonzero boundary conditions [J].
Ablowitz, Mark J. ;
Luo, Xu-Dan ;
Musslimani, Ziad H. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)
[6]   Integrable Nonlocal Nonlinear Equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) :7-59
[7]   Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2016, 29 (03) :915-946
[8]   Integrable discrete PT symmetric model [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW E, 2014, 90 (03)
[9]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[10]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249