DNA-Polymer Nanostructures by RAFT Polymerization and Polymerization-Induced Self-Assembly

被引:55
作者
Lueckerath, Thorsten [1 ]
Koynov, Kaloian [1 ]
Loescher, Sebastian [2 ,3 ]
Whitfield, Colette J. [1 ]
Nuhn, Lutz [1 ]
Walther, Andreas [2 ,3 ]
Barner-Kowollik, Christopher [4 ]
Ng, David Y. W. [1 ]
Weil, Tanja [1 ]
机构
[1] Max Planck Inst Polymer Res, Synth Macromol, Ackermannweg 10, D-55128 Mainz, Germany
[2] Freiburg Univ, Inst Macromol Chem, Stefan Meier Str 31, D-79104 Freiburg, Germany
[3] Freiburg Inst Interact Mat & Bioinspired Technol, Georges Kohler Allee 105, D-79104 Freiburg, Germany
[4] Queensland Univ Technol QUT, Sch Chem & Phys, Ctr Mat Sci, 2 George St, Brisbane, Qld 4000, Australia
基金
欧洲研究理事会; 澳大利亚研究理事会;
关键词
DNA-polymer nanostructures; enzyme degassing; grafting-from approach; polymerization-induced self-assembly; RAFT polymerization; TRANSFER RADICAL POLYMERIZATION; COPOLYMER NANO-OBJECTS; WELL-DEFINED POLYMERS; FLUORESCENCE; FABRICATION; HYDROGELS; MICELLES; ORIGAMI; RELEASE;
D O I
10.1002/anie.201916177
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanostructures derived from amphiphilic DNA-polymer conjugates have emerged prominently due to their rich self-assembly behavior; however, their synthesis is traditionally challenging. Here, we report a novel platform technology towards DNA-polymer nanostructures of various shapes by leveraging polymerization-induced self-assembly (PISA) for polymerization from single-stranded DNA (ssDNA). A "grafting from" protocol for thermal RAFT polymerization from ssDNA under ambient conditions was developed and utilized for the synthesis of functional DNA-polymer conjugates and DNA-diblock conjugates derived from acrylates and acrylamides. Using this method, PISA was applied to manufacture isotropic and anisotropic DNA-polymer nanostructures by varying the chain length of the polymer block. The resulting nanostructures were further functionalized by hybridization with a dye-labelled complementary ssDNA, thus establishing PISA as a powerful route towards intrinsically functional DNA-polymer nanostructures.
引用
收藏
页码:15474 / 15479
页数:6
相关论文
共 77 条
[1]  
Alemdaroglu F.E., 2006, Angew. Chem., V118, P4313
[2]   DNA block copolymer micelles - A combinatorial tool for cancer Nanotechnology [J].
Alemdaroglu, Fikri E. ;
Alemdaroglu, N. Ceren ;
Langguth, Peter ;
Herrmann, Andreas .
ADVANCED MATERIALS, 2008, 20 (05) :899-+
[3]   DNA-templated synthesis in three dimensions: Introducing a micellar scaffold for organic reactions [J].
Alemdaroglu, Fikri E. ;
Ding, Ke ;
Berger, Ruediger ;
Herrmann, Andreas .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (25) :4206-4210
[4]  
[Anonymous], 2017, ANGEW CHEM
[5]  
[Anonymous], 2016, Angew. Chem. Int. Ed
[6]  
Averick S.E., 2014, Angewandte Chemie, V126, P2777
[7]   Solid-Phase Incorporation of an ATRP Initiator for Polymer-DNA Biohybrids [J].
Averick, Saadyah E. ;
Dey, Sourav K. ;
Grahacharya, Debasish ;
Matyjaszewski, Krzysztof ;
Das, Subha R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (10) :2739-2744
[8]   Atom Transfer Radical Polymerization for Biorelated Hybrid Materials [J].
Baker, Stefanie L. ;
Kaupbayeva, Bibifatima ;
Lathwal, Sushil ;
Das, Subha R. ;
Russell, Alan J. ;
Matyjaszewski, Krzysztof .
BIOMACROMOLECULES, 2019, 20 (12) :4272-4298
[9]   ADSORPTION OF DNA TO MICA, SILYLATED MICE, AND MINERALS - CHARACTERIZATION BY ATOMIC-FORCE MICROSCOPY [J].
BEZANILLA, M ;
MANNE, S ;
LANEY, DE ;
LYUBCHENKO, YL ;
HANSMA, HG .
LANGMUIR, 1995, 11 (02) :655-659
[10]   Cyanine-Mediated DNA Nanofiber Growth with Controlled Dimensionality [J].
Bousmail, Danny ;
Chidchob, Pongphak ;
Sleiman, Hanadi F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (30) :9518-9530