Preconditioned inexact Jacobi-Davidson method for large symmetric eigenvalue problems

被引:0
作者
Miao, Hong-Yi [1 ,2 ]
Wang, Li [1 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, NSLSCS, Jiangsu Key Lab, Nanjing 210046, Peoples R China
[2] Nanjing Forestry Univ, Coll Sci, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
Eigenvalues; Symmetric matrix; Inexact Jacobi-Davidson method; Saddle point matrix; Preconditioner; SHIFT-SPLITTING PRECONDITIONERS; NUMERICAL-SOLUTION; ITERATION; EQUATIONS;
D O I
10.1007/s40314-020-01172-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A preconditioned inexact Jacobi-Davidson method for the computation of the eigenpairs of large and sparse symmetric matrices is proposed. In each inner iteration step of Jacobi-Davidson method, two preconditioners based on a regularization method and shift-splitting of the saddle point matrix are given. Then the properties of the preconditioned matrix are investigated. Numerical results illustrate that the new proposed algorithms are more efficient than Jacobi-Davidson method.
引用
收藏
页数:13
相关论文
共 24 条
[1]  
[Anonymous], ELECT T NUMER ANAL
[2]  
[Anonymous], 1996, The PWS series in computer science. The PWS Series in Computer Science
[3]   PRECONDITIONING OF INDEFINITE PROBLEMS BY REGULARIZATION [J].
AXELSSON, O .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (01) :58-69
[4]  
Bai ZZ, 2007, IMA J NUMER ANAL, V27, P1, DOI [10.1093/imanum/drl017, 10.1093/imanum/dr1017]
[5]  
Bai ZZ, 2006, J COMPUT MATH, V24, P539
[6]   On local quadratic convergence of inexact simplified Jacobi-Davidson method [J].
Bai, Zhong-Zhi ;
Miao, Cun-Qiang .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 520 :215-241
[7]  
Bathe K-J, 2006, Finite element procedures
[8]  
Benzi M, 2005, ACTA NUMER, V14, P1, DOI 10.1017/S0962492904000212
[9]   On preconditioned generalized shift-splitting iteration methods for saddle point problems [J].
Cao, Yang ;
Miao, Shu-Xin ;
Ren, Zhi-Ru .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (04) :859-872
[10]   A class of generalized shift-splitting preconditioners for nonsymmetric saddle point problems [J].
Cao, Yang ;
Li, Sen ;
Yao, Lin-Quan .
APPLIED MATHEMATICS LETTERS, 2015, 49 :20-27