Molecular origin of differences in hole and electron mobility in amorphous Alq3-a multiscale simulation study

被引:49
作者
Fuchs, Andreas [1 ,5 ]
Steinbrecher, Thomas [2 ]
Mommer, Mario S. [3 ]
Nagata, Yuki [4 ]
Elstner, Marcus [2 ]
Lennartz, Christian [1 ,5 ]
机构
[1] BASF SE, Dept Computat Chem, D-67056 Ludwigshafen, Germany
[2] Univ Karlsruhe, KIT Inst Phys Chem, Abt Theoret Chem Biol, D-76131 Karlsruhe, Germany
[3] Interdisciplinary Ctr Sci Comp IWR, Simulat & Optimizat Grp, D-69120 Heidelberg, Germany
[4] Max Planck Inst Polymer Res, D-55127 Mainz, Germany
[5] InnovationLab GmbH, D-69115 Heidelberg, Germany
关键词
DISTRIBUTED MULTIPOLE ANALYSIS; POISSON-BOLTZMANN EQUATION; CHARGE-TRANSPORT; ORGANIC SEMICONDUCTORS; POLARIZATION ENERGIES; FORCE-FIELD; SYSTEMS; DISORDER; CRYSTALS; REORGANIZATION;
D O I
10.1039/c2cp23489k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to determine the molecular origin of the difference in electron and hole mobilities of amorphous thin films of Alq(3) (meridional Alq3 (tris(8-hydroxyquinoline) aluminium)) we performed multiscale simulations covering quantum mechanics, molecular mechanics and lattice models. The study includes realistic disordered morphologies, polarized site energies to describe diagonal disorder, quantum chemically calculated transfer integrals for the off-diagonal disorder, inner sphere reorganization energies and an approximative scheme for outer sphere reorganization energies. Intermolecular transfer rates were calculated via Marcus-theory and mobilities were simulated via kinetic Monte Carlo simulations and by a Master Equation approach. The difference in electron and hole mobility originates from the different localization of charge density in the radical anion (more delocalized) compared to the radical cation (more confined). This results in higher diagonal disorder for holes and less favourable overlap properties for the hole transfer integrals leading to an overall higher electron mobility.
引用
收藏
页码:4259 / 4270
页数:12
相关论文
共 67 条
[1]   ELECTRONIC-STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS - THE PROGRAM SYSTEM TURBOMOLE [J].
AHLRICHS, R ;
BAR, M ;
HASER, M ;
HORN, H ;
KOLMEL, C .
CHEMICAL PHYSICS LETTERS, 1989, 162 (03) :165-169
[2]  
[Anonymous], 2004, CHARGE ENERGY TRANSF
[3]   Contemporary issues in electron transfer research [J].
Barbara, PF ;
Meyer, TJ ;
Ratner, MA .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31) :13148-13168
[4]  
Bashford D., 1997, MACROSCOPIC ELECTROS, P53
[5]   CHARGE TRANSPORT IN DISORDERED ORGANIC PHOTOCONDUCTORS - A MONTE-CARLO SIMULATION STUDY [J].
BASSLER, H .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1993, 175 (01) :15-56
[6]   Quantum versus classical electron transfer energy as reaction coordinate for the aqueous Ru2+/Ru3+ redox reaction [J].
Blumberger, J ;
Sprik, M .
THEORETICAL CHEMISTRY ACCOUNTS, 2006, 115 (2-3) :113-126
[7]   VAN DER WAALS VOLUMES + RADII [J].
BONDI, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1964, 68 (03) :441-+
[8]   Carrier-density and field-dependent charge-carrier mobility in organic semiconductors with correlated Gaussian disorder [J].
Bouhassoune, M. ;
van Mensfoort, S. L. M. ;
Bobbert, P. A. ;
Coehoorn, R. .
ORGANIC ELECTRONICS, 2009, 10 (03) :437-445
[9]   Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers:: A molecular picture [J].
Brédas, JL ;
Beljonne, D ;
Coropceanu, V ;
Cornil, J .
CHEMICAL REVIEWS, 2004, 104 (11) :4971-5003
[10]   Performance of Nonlinear Finite-Difference Poisson-Boltzmann Solvers [J].
Cai, Qin ;
Hsieh, Meng-Juei ;
Wang, Jun ;
Luo, Ray .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (01) :203-211