Selection of Measurement Modality for Magnetic Material Characterization of an Electromagnetic Device Using Stochastic Uncertainty Analysis

被引:13
作者
Abdallh, Ahmed Abou-Elyazied [1 ]
Crevecoeur, Guillaume [1 ]
Dupre, Luc [1 ]
机构
[1] Univ Ghent, Dept Elect Energy Syst & Automat, B-9000 Ghent, Belgium
关键词
Cramer-Rao bound; inverse problem; magnetic material identification; stochastic uncertainty analysis; PARAMETER-ESTIMATION; EEG; BOUNDS;
D O I
10.1109/TMAG.2011.2151870
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Magnetic material properties of an electromagnetic device (EMD) can be estimated by solving an inverse problem where electromagnetic or mechanical measurements are adequately interpreted by a numerical forward model. Due to measurement noise and uncertainties in the forward model, errors are made in the reconstruction of the material properties. This paper describes the formulation and implementation of a time-efficient numerical error estimation procedure for predicting the optimal measurement modality that leads to minimal error resolution in magnetic material characterization. We extended the traditional Cramer-Rao bound technique for error estimation due to measurement noise only, with stochastic uncertain geometrical model parameters. Moreover, we applied the method onto the magnetic material characterization of a Switched Reluctance Motor starting from different measurement modalities: mechanical; local and global magnetic measurements. The numerical results show that the local magnetic measurement modality needs to be selected for this test case. Moreover, the proposed methodology is validated numerically by Monte Carlo simulations, and experimentally by solving multiple inverse problems starting from real measurements. The presented numerical procedure is able to determine a priori error estimation, without performing the very time consuming Monte Carlo simulations.
引用
收藏
页码:4564 / 4573
页数:10
相关论文
共 27 条
[1]   Magnetic Material Identification in Geometries With Non-Uniform Electromagnetic Fields Using Global and Local Magnetic Measurements [J].
Abdallh, A. Abou-Elyazied ;
Sergeant, P. ;
Crevecoeur, G. ;
Vandenbossche, L. ;
Dupre, L. ;
Sablik, M. .
IEEE TRANSACTIONS ON MAGNETICS, 2009, 45 (10) :4157-4160
[2]   An Inverse Approach for Magnetic Material Characterization of an EI Core Electromagnetic Inductor [J].
Abdallh, Ahmed Abou-Elyazied ;
Sergeant, Peter ;
Crevecoeur, Guillaume ;
Dupre, Luc .
IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (02) :622-625
[3]   MAGNETIC TORQUE OR FORCE CALCULATION BY DIRECT DIFFERENTIATION OF FINITE-ELEMENT COENERGY [J].
ARONSON, EA ;
BRAUER, JR .
IEEE TRANSACTIONS ON MAGNETICS, 1989, 25 (05) :3578-3580
[4]   Inaccuracies of Giant Magneto-Resistive Angle Sensors Due to Assembly Tolerances [J].
Ausserlechner, Udo .
IEEE TRANSACTIONS ON MAGNETICS, 2009, 45 (05) :2165-2174
[5]  
Bastiaensen C., 2008, INT C PROB METH APPL
[6]  
Chancharoensook P., 2001, Proceedings of the Australasian Universities Power Engineering Conference (AUPEC-2001), P613
[7]  
Dragu C., 2003, 10 EUR C POW EL APPL
[8]   Static Eccentricity Fault Diagnosis in Permanent Magnet Synchronous Motor Using Time Stepping Finite Element Method [J].
Ebrahimi, Bashir Mahdi ;
Faiz, Jawad ;
Javan-Roshtkhari, M. ;
Nejhad, A. Zargham .
IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (11) :4297-4300
[9]   Uncertainties in parameter estimation: the optimal experiment design [J].
Emery, AF ;
Nenarokomov, AV ;
Fadale, TD .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2000, 43 (18) :3331-3339
[10]   Optimal experiment design [J].
Emery, AF ;
Nenarokomov, AV .
MEASUREMENT SCIENCE AND TECHNOLOGY, 1998, 9 (06) :864-876