PROTOTYPE MODULAR CRYOSTAT UTILIZED FOR 10 MW OFFSHORE SUPERCONDUCTING WIND TURBINE

被引:0
作者
Jiuce, Sun [1 ]
Santiago, Sanz [2 ]
Rajinikumar, Ramalingam [1 ,3 ]
Holger, Neumann [1 ]
机构
[1] Karlsruhe Inst Technol, D-76344 Eggenstein Leopoldshafen, Germany
[2] Tecnalia, Derio 48160, Spain
[3] Indian Inst Technol Mandi, Kamand 175005, India
来源
14TH CRYOGENICS 2017 IIR INTERNATIONAL CONFERENCE (CRYOGENICS 2017) | 2017年
关键词
Modular cryostat; Superconducting; Offshore wind turbine; 10; MW; GM cryocooler;
D O I
10.18462/iir.cryo.2017.0019
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Karlsruhe Institute of Technology (KIT) has designed the cryogenic cooling system for a 10 MW superconducting generator (SCG) for offshore wind turbines. The cooling system adopts the cryogen-free and modular concept. A modular cryostat, that enables each of 48 coils in the SCG to work at cryogenic temperatures of 20 K, provides an advantage of easy transportation, installation, and maintenance in the offshore environment. Furthermore, with the modular design the 10 MW SCG concept can be validated through a scale-down model. This paper describes the development of a prototype modular cryostat and the preliminary cool down by a two stage Gifford-McMahon cryocooler through conduction cooling. The dummy coil made of copper enveloped in the cryostat could reach a temperature of 9 K after 56.5 hours. The encouraging experimental results agree well with the numerical simulation. Numerical model and test results are presented.
引用
收藏
页码:120 / 125
页数:6
相关论文
共 45 条
[21]   Study of air compressibility effects on the aerodynamic performance of the IEA-15 MW offshore wind turbine [J].
Cao, Jiufa ;
Qin, Zhaojie ;
Ju, Yi ;
Chen, Yuanhang ;
Shen, Wen Zhong ;
Shen, Xiang ;
Ke, Shitang .
ENERGY CONVERSION AND MANAGEMENT, 2023, 282
[22]   DESIGN OF STRUCTURE OF TENSION LEG PLATFORM FOR 6 MW OFFSHORE WIND TURBINE BASED ON FEM ANALYSIS [J].
Zywicki, Jedrzej ;
Dymarski, Pawel ;
Ciba, Ewelina ;
Dymarski, Czeslaw .
POLISH MARITIME RESEARCH, 2017, 24 :230-241
[23]   Dynamic Response Study of 10 MW Floating Wind Turbine Based on the NAUTILUS Platform [J].
Fan, Li ;
Yue, Minnan ;
He, Hongsheng ;
Xie, Lu ;
Li, Chun ;
Jia, Wenzhe .
Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2025, 45 (06) :2298-2307
[24]   Thermal Analysis of 10-MW-Class Wind Turbine HTS Synchronous Generator [J].
Shafaie, Rouhollah ;
Kalantar, Mohsen ;
Gholami, Ahmad .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2014, 24 (02)
[25]   Comparison of different fidelity hydrodynamic-aerodynamic coupled simulation code on the 10 MW semi-submersible type floating offshore wind turbine [J].
Yang, Ho-Seong ;
Tongphong, Watchara ;
Ali, Alkhabbaz ;
Lee, Young -Ho .
OCEAN ENGINEERING, 2023, 281
[26]   Design of a 10 MW Dual-Stator Superconducting Permanent Magnet Wind Power Generator [J].
Zhang, Kaihe ;
Gao, Yuqing ;
Fang, Youtong ;
Huang, Xiaoyan ;
Lu, Qinfen ;
Wu, Lijian ;
Yang, Huan .
2016 19TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2016), 2016,
[27]   Implementation and evaluation of control strategies based on an open controller for a 10 MW floating wind turbine [J].
Hu, Ruiqi ;
Le, Conghuan ;
Gao, Zhen ;
Ding, Hongyan ;
Zhang, Puyang .
RENEWABLE ENERGY, 2021, 179 :1751-1766
[28]   Current, wave, wind and interaction induced dynamic response of a 5 MW spar-type offshore direct-drive wind turbine [J].
Ye, Kan ;
Ji, Jinchen .
ENGINEERING STRUCTURES, 2019, 178 :395-409
[29]   On design, modelling, and analysis of a 10-MW medium-speed drivetrain for offshore wind turbines [J].
Wang, Shuaishuai ;
Nejad, Amir R. ;
Moan, Torgeir .
WIND ENERGY, 2020, 23 (04) :1099-1117
[30]   System identification and finite element model updating of a 6 MW offshore wind turbine using vibrational response measurements [J].
Moynihan, Bridget ;
Mehrjoo, Azin ;
Moaveni, Babak ;
Mcadam, Ross ;
Rudinger, Finn ;
Hines, Eric .
RENEWABLE ENERGY, 2023, 219