PROTOTYPE MODULAR CRYOSTAT UTILIZED FOR 10 MW OFFSHORE SUPERCONDUCTING WIND TURBINE

被引:0
作者
Jiuce, Sun [1 ]
Santiago, Sanz [2 ]
Rajinikumar, Ramalingam [1 ,3 ]
Holger, Neumann [1 ]
机构
[1] Karlsruhe Inst Technol, D-76344 Eggenstein Leopoldshafen, Germany
[2] Tecnalia, Derio 48160, Spain
[3] Indian Inst Technol Mandi, Kamand 175005, India
来源
14TH CRYOGENICS 2017 IIR INTERNATIONAL CONFERENCE (CRYOGENICS 2017) | 2017年
关键词
Modular cryostat; Superconducting; Offshore wind turbine; 10; MW; GM cryocooler;
D O I
10.18462/iir.cryo.2017.0019
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Karlsruhe Institute of Technology (KIT) has designed the cryogenic cooling system for a 10 MW superconducting generator (SCG) for offshore wind turbines. The cooling system adopts the cryogen-free and modular concept. A modular cryostat, that enables each of 48 coils in the SCG to work at cryogenic temperatures of 20 K, provides an advantage of easy transportation, installation, and maintenance in the offshore environment. Furthermore, with the modular design the 10 MW SCG concept can be validated through a scale-down model. This paper describes the development of a prototype modular cryostat and the preliminary cool down by a two stage Gifford-McMahon cryocooler through conduction cooling. The dummy coil made of copper enveloped in the cryostat could reach a temperature of 9 K after 56.5 hours. The encouraging experimental results agree well with the numerical simulation. Numerical model and test results are presented.
引用
收藏
页码:120 / 125
页数:6
相关论文
共 43 条
  • [1] Optimal Design of a Fully Superconducting Machine for 10-MW Offshore Wind Turbines
    Balachandran, Thanatheepan
    Lee, Dongsu
    Haran, Kiruba S.
    2019 IEEE INTERNATIONAL ELECTRIC MACHINES & DRIVES CONFERENCE (IEMDC), 2019, : 1903 - 1909
  • [2] 3 MW class offshore wind turbine development
    Park, Jiwoong
    Kim, Jeongil
    Shin, Youngho
    Lee, Jeonghoon
    Park, Jongpo
    CURRENT APPLIED PHYSICS, 2010, 10 : S307 - S310
  • [3] Study on the Motion Characteristics of 10 MW Superconducting Floating Offshore Wind Turbine Considering 2nd Order Wave Effect
    Yu, Youngjae
    Pham, Thanh Dam
    Shin, Hyunkyoung
    Ha, Kwangtae
    ENERGIES, 2021, 14 (19)
  • [4] Tendon response of 10 MW offshore wind turbine TLP platform in extreme environment condition
    Zhang, Quan
    Zhao, Chengbi
    Chen, Xiaoming
    Tang, Youhong
    Lin, Wei
    APPLIED MECHANICS AND MATERIALS II, PTS 1 AND 2, 2014, 477-478 : 119 - +
  • [5] Seismic fragility analysis of 5 MW offshore wind turbine
    Kim, Dong Hyawn
    Lee, Sang Geun
    Lee, Il Keun
    RENEWABLE ENERGY, 2014, 65 : 250 - 256
  • [6] Design and optimisation of a 20 MW offshore wind turbine blade
    Koragappa, Pavana
    Verdin, Patrick G.
    OCEAN ENGINEERING, 2024, 305
  • [7] On the definition and effect of optimum gear microgeometry modifications for the gearbox of an offshore 10-MW wind turbine
    Blanco, Blas
    Escalona, Jose Luis
    Lambert, Robert
    Ling, Robert
    Balling, Ole
    WIND ENERGY, 2023, 26 (07) : 717 - 740
  • [8] Feasibility study of 5 MW superconducting wind turbine generator
    Abrahamsen, A. B.
    Jensen, B. B.
    Seiler, E.
    Mijatovic, N.
    Rodriguez-Zermeno, V. M.
    Andersen, N. H.
    Ostergard, J.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2011, 471 (21-22): : 1464 - 1469
  • [9] Load Analysis of 2.5MW Offshore Wind Turbine Tower
    Ji, Caiyun
    Zhu, Longbiao
    Zhu, Zhisong
    FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE II, PTS 1-6, 2012, 121-126 : 206 - 212
  • [10] Design, Implementation, and Evaluation of an Output Prediction Model of the 10 MW Floating Offshore Wind Turbine for a Digital Twin
    Kim, Changhyun
    Dinh, Minh-Chau
    Sung, Hae-Jin
    Kim, Kyong-Hwan
    Choi, Jeong-Ho
    Graber, Lukas
    Yu, In-Keun
    Park, Minwon
    ENERGIES, 2022, 15 (17)