On the collision matrix of the lattice Boltzmann method for anisotropic convection-diffusion equations

被引:3
作者
Guo, Chang [1 ]
Zhao, Weifeng [1 ]
Lin, Ping [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, Dept Appl Math, Beijing 100083, Peoples R China
[2] Univ Dundee, Div Math, Dundee DD1 4HN, Scotland
基金
中国国家自然科学基金;
关键词
Anisotropic convection-diffusion equations; Lattice Boltzmann method; Collision matrix; Half-way anti-bounce-back scheme; Second-order accuracy; MODEL; ADVECTION;
D O I
10.1016/j.aml.2020.106304
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we are concerned with the lattice Boltzmann method for anisotropic convection-diffusion equations (CDEs). We prove that the collision matrices of many widely used lattice Boltzmann models for such equations admit an elegant property, which guarantees the second-order accuracy of the half-way anti-bounce-back scheme. Numerical experiments validated our results for both two- and three-dimensional anisotropic CDEs. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 17 条
[1]  
[Anonymous], 2016, J SCI COMPUT
[2]  
dHumieres D., 1992, PROGR ASTRONAUT AERO, P450
[3]   A lattice Boltzmann model for the fractional advection-diffusion equation coupled with incompressible Navier-Stokes equation [J].
Du, Rui ;
Liu, Zixuan .
APPLIED MATHEMATICS LETTERS, 2020, 101
[4]   LATTICE-GAS AUTOMATA FOR THE NAVIER-STOKES EQUATION [J].
FRISCH, U ;
HASSLACHER, B ;
POMEAU, Y .
PHYSICAL REVIEW LETTERS, 1986, 56 (14) :1505-1508
[5]   Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation [J].
Ginzburg, I .
ADVANCES IN WATER RESOURCES, 2005, 28 (11) :1171-1195
[6]   Multiple anisotropic collisions for advection-diffusion Lattice Boltzmann schemes [J].
Ginzburg, Irina .
ADVANCES IN WATER RESOURCES, 2013, 51 :381-404
[7]   BOLTZMANN APPROACH TO LATTICE GAS SIMULATIONS [J].
HIGUERA, FJ ;
JIMENEZ, J .
EUROPHYSICS LETTERS, 1989, 9 (07) :663-668
[8]   LATTICE GAS-DYNAMICS WITH ENHANCED COLLISIONS [J].
HIGUERA, FJ ;
SUCCI, S ;
BENZI, R .
EUROPHYSICS LETTERS, 1989, 9 (04) :345-349
[9]   General propagation lattice Boltzmann model for variable-coefficient non-isospectral KdV equation [J].
Hu, Wen-Qiang ;
Jia, Shu-Liang .
APPLIED MATHEMATICS LETTERS, 2019, 91 :61-67
[10]   A modified multiple-relaxation-time lattice Boltzmann model for convection-diffusion equation [J].
Huang, Rongzong ;
Wu, Huiying .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 274 :50-63