Nonlocal Solitons in a Nonlinear Chain of Atoms

被引:1
作者
Gadzhimuradov, T. A. [1 ]
Agalarov, A. M. [1 ]
机构
[1] Russian Acad Sci, Inst Phys, Fed State Inst Sci, Dagestan Sci Ctr, Makhachkala, Russia
关键词
PF symmetry; soliton; Darboux transformation; DARK SOLITONS; EQUATION; WAVES;
D O I
10.1134/S1063783420060074
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A nonlinear 1D chain with nonlocal interaction has been considered. A nonlocal equation describing the propagation of envelope waves in the medium has been obtained using the multiscale decomposition method. The properties of the resulting equation have been studied and exact soliton-like solutions have been constructed using the Darboux transformation method.
引用
收藏
页码:982 / 987
页数:6
相关论文
共 46 条
[1]   Integrable Nonlocal Nonlinear Equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) :7-59
[2]   Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2016, 29 (03) :915-946
[3]   Integrable discrete PT symmetric model [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW E, 2014, 90 (03)
[4]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[5]   Bright, dark, and mixed vector soliton solutions of the general coupled nonlinear Schrodinger equations [J].
Agalarov, Agalar ;
Zhulego, Vladimir ;
Gadzhimuradov, Telman .
PHYSICAL REVIEW E, 2015, 91 (04)
[6]   Waves that appear from nowhere and disappear without a trace [J].
Akhmediev, N. ;
Ankiewicz, A. ;
Taki, M. .
PHYSICS LETTERS A, 2009, 373 (06) :675-678
[7]   Solutions of the Vector Nonlinear Schrodinger Equations: Evidence for Deterministic Rogue Waves [J].
Baronio, Fabio ;
Degasperis, Antonio ;
Conforti, Matteo ;
Wabnitz, Stefan .
PHYSICAL REVIEW LETTERS, 2012, 109 (04)
[8]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[9]   Families of Particles with Different Masses in PT-Symmetric Quantum Field Theory [J].
Bender, Carl M. ;
Klevansky, S. P. .
PHYSICAL REVIEW LETTERS, 2010, 105 (03)
[10]   Scalar quantum field theory with a complex cubic interaction [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW LETTERS, 2004, 93 (25) :251601-1