Role of Surfactant Molecular Structure on Self-Assembly: Aqueous SDBS on Carbon Nanotubes

被引:78
作者
Suttipong, Manaswee [3 ]
Tummala, Naga Rajesh [1 ]
Kitiyanan, Boonyarach [2 ,3 ]
Striolo, Alberto [1 ]
机构
[1] Univ Oklahoma, Sch Chem Biol & Mat Engn, Norman, OK 73019 USA
[2] Chulalongkorn Univ, Ctr Petr Petrochem & Adv Mat, Bangkok 10330, Thailand
[3] Chulalongkorn Univ, Petr & Petrochem Coll, Bangkok 10330, Thailand
基金
美国国家科学基金会;
关键词
PHASE-EQUILIBRIA; SDS SURFACTANTS; FORCE-FIELD; DISPERSION; DYNAMICS; SIMULATION; GRAPHITE; SOLUBILIZATION;
D O I
10.1021/jp203247r
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Stabilizing single-walled carbon nanotubes (SWNTs) monodispersed in diameter and chirality in aqueous media remains elusive. Surfactants have proven useful in deploying ultracentrifugation techniques for separating carbon nanotubes, but the molecular mechanism responsible for the effectiveness for such technique remains not fully understood. On the basis of recent molecular simulation results, it appears that the morphology of self-assembled surfactant aggregates on carbon nanotubes strongly affects the effective potential of mean force between pairs of interacting carbon nanotubes. In the present work, the effect of surfactant molecular structure on the properties of aqueous surfactant self-assembled aggregates was investigated using all-atom molecular dynamics simulations. To quantify how the surfactant molecular structure affects self-assembly, sodium dodecylbenzenesulfonate (SDBS) surfactants with the headgroup located either on the fifth or on the twelfth carbon atom along the dodecyl tail were considered. All simulations were conducted at room conditions for different surface coverages on (6,6), (12,12), and (20,20) SWNTs. The results suggest that the surfactant molecular structure strongly affects the packing of surfactants on the nanotubes, therefore modulating effective nanotube-nanotube interactions. In qualitative agreement with experiments, no strong effects due to nanotube diameter were observed.
引用
收藏
页码:17286 / 17296
页数:11
相关论文
共 50 条
[11]   Self-Assembly of DNA Segments on Graphene and Carbon Nanotube Arrays in Aqueous Solution: A Molecular Simulation Study [J].
Zhao, Xiongce .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (14) :6181-6189
[12]   Self-assembly of the surfactant mixtures on graphene in the presence of electrolyte: a molecular simulation study [J].
Poorsargol, Mahdiye ;
Sohrabi, Beheshteh ;
Dehestani, Maryam .
ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2021, 27 (01) :69-79
[13]   Self-Assembly Behaviors of Heterogemini Surfactant in Aqueous Solution Investigated by Dissipative Particle Dynamics [J].
Xu, Yi ;
Yu, Xinglu ;
Yan, Hao ;
Wang, Yong ;
Feng, Jian .
JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2014, 35 (09) :1300-1307
[14]   Self-assembly of sugar-based amphiphile on carbon nanotubes for protein adsorption [J].
Feng, Wei ;
Luo, Rongmei ;
Xiao, Jing ;
Ji, Peijun ;
Zheng, Zhigang .
CHEMICAL ENGINEERING SCIENCE, 2011, 66 (20) :4807-4813
[15]   Aggregation kinetics of SDBS-dispersed carbon nanotubes in different aqueous suspensions [J].
Ju, Li ;
Zhang, Wei ;
Wang, Xuejun ;
Hu, Jundong ;
Zhang, Yuling .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2012, 409 :159-166
[16]   Cation Triggered Self-Assembly of α-Lactalbumin Nanotubes [J].
Liu, Bin ;
Radiom, Milad ;
Zhou, Jiangtao ;
Yan, Huiling ;
Zhang, Jipeng ;
Wu, Di ;
Sun, Qiyao ;
Xuan, Qize ;
Li, Yuan ;
Mezzenga, Raffaele .
NANO LETTERS, 2024, 24 (16) :4951-4958
[17]   Controlled Self-Assembly of Filled Micelles on Nanotubes [J].
Patra, Niladri ;
Kral, Petr .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (16) :6146-6149
[18]   Controlled Self-Assembly of Photofunctional Supramolecular Nanotubes [J].
Cohen, Erez ;
Weissman, Haim ;
Pinkas, Iddo ;
Shimoni, Eyal ;
Rehak, Pavel ;
Kral, Petr ;
Rybtchinski, Boris .
ACS NANO, 2018, 12 (01) :317-326
[19]   Carbon nanotube self-assembly with lipids and detergent: a molecular dynamics study [J].
Wallace, E. Jayne ;
Sansom, Mark S. P. .
NANOTECHNOLOGY, 2009, 20 (04)
[20]   Molecular insights into the self-assembly of hydrophobically modified chondroitin sulfate in aqueous media [J].
Zak, Agata ;
Lazarski, Grzegorz ;
Wytrwal-Sarna, Magdalena ;
Jamroz, Dorota ;
Gorniewicz, Magdalena ;
Forys, Aleksander ;
Trzebicka, Barbara ;
Kepczynski, Mariusz .
CARBOHYDRATE POLYMERS, 2022, 297