Nonalcoholic fatty liver disease and early prediction of gestational diabetes mellitus using machine learning methods

被引:15
作者
Lee, Seung Mi [1 ,2 ]
Hwangbo, Suhyun [3 ]
Norwitz, Errol R. [4 ]
Koo, Ja Nam [5 ]
Oh, Ig Hwan [5 ]
Choi, Eun Saem [2 ]
Jung, Young Mi [1 ,2 ]
Kim, Sun Min [1 ,6 ]
Kim, Byoung Jae [1 ,6 ]
Kim, Sang Youn [7 ]
Kim, Gyoung Min [8 ]
Kim, Won [9 ,10 ]
Joo, Sae Kyung [9 ,10 ]
Shin, Sue [11 ,12 ]
Park, Chan-Wook [1 ,2 ]
Park, Taesung [13 ]
Park, Joong Shin [1 ,2 ]
机构
[1] Seoul Natl Univ, Coll Med, Dept Obstet & Gynecol, 101 Daehak Ro, Seoul 03080, South Korea
[2] Seoul Natl Univ Hosp, Dept Obstet & Gynecol, Seoul, South Korea
[3] Seoul Natl Univ, Interdisciplinary Program Bioinformat, Seoul, South Korea
[4] Tufts Univ, Sch Med, Dept Obstet & Gynecol, Boston, MA USA
[5] Seoul Womens Hosp, Incheon, South Korea
[6] Seoul Natl Univ, Seoul Metropolitan Govt, Boramae Med Ctr, Dept Obstet & Gynecol, Seoul, South Korea
[7] Seoul Natl Univ, Coll Med, Dept Radiol, Seoul, South Korea
[8] Yeonsei Univ, Coll Med, Dept Radiol, Seoul, South Korea
[9] Seoul Natl Univ, Coll Med, Dept Internal Med, Seoul, South Korea
[10] Seoul Natl Univ, Seoul Metropolitan Govt, Boramae Med Ctr, Dept Internal Med, Seoul, South Korea
[11] Seoul Natl Univ, Coll Med, Dept Lab Med, Seoul, South Korea
[12] Seoul Natl Univ, Seoul Metropolitan Govt, Boramae Med Ctr, Dept Lab Med, Seoul, South Korea
[13] Seoul Natl Univ, Dept Stat, 1 Gwanak Ro, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Nonalcoholic fatty liver disease; Diabetes; Gestational; Machine learning; Prediction; Pregnancy; High-risk; LIFE-STYLE INTERVENTION; PREVALENCE; PREGNANCY; STEATOHEPATITIS; EPIDEMIOLOGY; REGRESSION; ULTRASOUND; OVERWEIGHT; DIAGNOSIS; HEALTH;
D O I
10.3350/cmh.2021.0174
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background/Aims: To develop an early prediction model for gestational diabetes mellitus (GDM) using machine learning and to evaluate whether the inclusion of nonalcoholic fatty liver disease (NAFLD)-associated variables increases the performance of model. Methods: This prospective cohort study evaluated pregnant women for NAFLD using ultrasound at 10-14 weeks and screened them for GDM at 24-28 weeks of gestation. The clinical variables before 14 weeks were used to develop prediction models for GDM (setting 1, conventional risk factors; setting 2, addition of new risk factors in recent guidelines; setting 3, addition of routine clinical variables; setting 4, addition of NALFD-associated variables, including the presence of NAFLD and laboratory results; and setting 5, top 11 variables identified from a stepwise variable selection method). The predictive models were constructed using machine learning methods, including logistic regression, random forest, support vector machine, and deep neural networks. Results: Among 1,443 women, 86 (6.0%) were diagnosed with GDM. The highest performing prediction model among settings 1-4 was setting 4, which included both clinical and NAFLD-associated variables (area under the receiver operating characteristic curve [AUC] 0.563-0.697 in settings 1-3 vs. 0.740-0.781 in setting 4). Setting 5, with top 11 variables (which included NAFLD and hepatic steatosis index), showed similar predictive power to setting 4 (AUC 0.719-0.819 in setting 5, P=not significant between settings 4 and 5). Conclusions: We developed an early prediction model for GDM using machine learning. The inclusion of NAFLD-associated variables significantly improved the performance of GDM prediction.
引用
收藏
页码:105 / 116
页数:12
相关论文
共 50 条
[21]   Bedside ultrasound in the diagnosis of nonalcoholic fatty liver disease [J].
Khov, Nancy ;
Sharma, Amol ;
Riley, Thomas R. .
WORLD JOURNAL OF GASTROENTEROLOGY, 2014, 20 (22) :6821-6825
[22]   Development of Web-Based Nomograms to Predict Treatment Response and Prognosis of Epithelial Ovarian Cancer [J].
Kim, Se Ik ;
Song, Minsun ;
Hwangbo, Suhyun ;
Lee, Sungyoung ;
Cho, Untack ;
Kim, Ju-Hyun ;
Lee, Maria ;
Kim, Hee Seung ;
Chung, Hyun Hoon ;
Suh, Dae-Shik ;
Park, Taesung ;
Song, Yong-Sang .
CANCER RESEARCH AND TREATMENT, 2019, 51 (03) :1144-1155
[23]   BMI and metabolic disorders in South Korean adults: 1998 Korea National Health and Nutrition Survey [J].
Kim, Y ;
Suh, YK ;
Choi, H .
OBESITY RESEARCH, 2004, 12 (03) :445-453
[24]   Gestational Diabetes Mellitus Can Be Prevented by Lifestyle Intervention: The Finnish Gestational Diabetes Prevention Study (RADIEL) A Randomized Controlled Trial [J].
Koivusalo, Saila B. ;
Rono, Kristiina ;
Klemetti, Miira M. ;
Roine, Risto P. ;
Lindstrom, Jaana ;
Erkkola, Maijaliisa ;
Kaaja, Risto J. ;
Poyhonen-Alho, Maritta ;
Tiitinen, Aila ;
Huvinen, Emilia ;
Andersson, Sture ;
Laivuori, Hannele ;
Valkama, Anita ;
Meinila, Jelena ;
Kautiainen, Hannu ;
Eriksson, Johan G. ;
Stach-Lempinen, Beata .
DIABETES CARE, 2016, 39 (01) :24-30
[25]   Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease [J].
Lee, Jeong-Hoon ;
Kim, Donghee ;
Kim, Hwa Jung ;
Lee, Chang-Hoon ;
Yang, Jong In ;
Kim, Won ;
Kim, Yoon Jun ;
Yoon, Jung-Hwan ;
Cho, Sang-Heon ;
Sung, Myung-Whun ;
Lee, Hyo-Suk .
DIGESTIVE AND LIVER DISEASE, 2010, 42 (07) :503-508
[26]   Nonalcoholic fatty liver disease is a risk factor for large-for-gestational-age birthweight [J].
Lee, Seung Mi ;
Kim, Byoung Jae ;
Koo, Ja Nam ;
Norwitz, Errol R. ;
Oh, Ig Hwan ;
Kim, Sun Min ;
Kim, Sang Youn ;
Kim, Gyoung Min ;
Kwak, Soo Heon ;
Kim, Won ;
Joo, Sae Kyung ;
Shin, Sue ;
Vixa, Chanthalakeo ;
Park, Chan-Wook ;
Jun, Jong Kwan ;
Park, Joong Shin .
PLOS ONE, 2019, 14 (08)
[27]   Non-alcoholic fatty liver disease in the first trimester and subsequent development of gestational diabetes mellitus [J].
Lee, Seung Mi ;
Kwak, Soo Heon ;
Koo, Ja Nam ;
Oh, Ig Hwan ;
Kwon, Jeong Eun ;
Kim, Byoung Jae ;
Kim, Sun Min ;
Kim, Sang Youn ;
Kim, Gyoung Min ;
Joo, Sae Kyung ;
Koo, Bo Kyung ;
Shin, Sue ;
Vixay, Chanthalakeo ;
Norwitz, Errol R. ;
Park, Chan-Wook ;
Jun, Jong Kwan ;
Kim, Won ;
Park, Joong Shin .
DIABETOLOGIA, 2019, 62 (02) :238-248
[28]   Machine learning risk score for prediction of gestational diabetes in early pregnancy in Tianjin, China [J].
Liu, Hongwei ;
Li, Jing ;
Leng, Junhong ;
Wang, Hui ;
Liu, Jinnan ;
Li, Weiqin ;
Liu, Hongyan ;
Wang, Shuo ;
Ma, Jun ;
Chan, Juliana C. N. ;
Yu, Zhijie ;
Hu, Gang ;
Li, Changping ;
Yang, Xilin .
DIABETES-METABOLISM RESEARCH AND REVIEWS, 2021, 37 (05)
[29]   The global NAFLD epidemic [J].
Loomba, Rohit ;
Sanyal, Arun J. .
NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2013, 10 (11) :686-690
[30]   Nonalcoholic fatty liver disease - A feature of the metabolic syndrome [J].
Marchesini, G ;
Brizi, M ;
Bianchi, G ;
Tomassetti, S ;
Bugianesi, E ;
Lenzi, M ;
McCullough, AJ ;
Natale, S ;
Forlani, G ;
Melchionda, N .
DIABETES, 2001, 50 (08) :1844-1850