Development of a novel peptide to prevent entry of SARS-CoV-2 into lung and olfactory bulb cells of hACE2 expressing mice

被引:4
|
作者
Su, Ping [1 ]
Zhai, Dongxu [1 ]
Wong, Albert H. C. [1 ,2 ,4 ,5 ]
Liu, Fang [1 ,2 ,3 ,4 ]
机构
[1] Ctr Addict & Mental Hlth, Campbell Family Mental Hlth Res Inst, 250 Coll St, Toronto, ON M5T 1R8, Canada
[2] Univ Toronto, Dept Psychiat, Toronto, ON M5T 1R8, Canada
[3] Univ Toronto, Dept Physiol, Toronto, ON M5S 1A8, Canada
[4] Univ Toronto, Inst Med Sci, Toronto, ON M5S 1A8, Canada
[5] Univ Toronto, Fac Med, Dept Pharmacol, Toronto, ON M5S 1A8, Canada
关键词
Angiotensin-converting enzyme 2 (ACE2); COVID-19; Interfering peptide; SARS-CoV-2; Viral entry; RECEPTOR COMPLEX; NMDA RECEPTOR; SPIKE PROTEIN; INFECTION; TMPRSS2; INHIBITION; FUSION; GENE; ACE2;
D O I
10.1186/s13041-022-00956-1
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that has caused a global pandemic Coronavirus Disease 2019 (COVID-19). Currently, there are no effective treatments specifically for COVID-19 infection. The initial step in SARS-CoV-2 infection is attachment to the angiotensin-converting enzyme 2 (ACE2) on the cell surface. We have developed a protein peptide that effectively disrupts the binding between the SARS-CoV-2 spike protein and ACE2. When delivered by nasal spray, our peptide prevents SARS-CoV-2 spike protein from entering lung and olfactory bulb cells of mice expressing human ACE2. Our peptide represents a potential novel treatment and prophylaxis against COVID-19.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Development of a novel peptide to prevent entry of SARS-CoV-2 into lung and olfactory bulb cells of hACE2 expressing mice
    Ping Su
    Dongxu Zhai
    Albert H. C. Wong
    Fang Liu
    Molecular Brain, 15
  • [2] Fatal Neurodissemination and SARS-CoV-2 Tropism in K18-hACE2 Mice Is Only Partially Dependent on hACE2 Expression
    Carossino, Mariano
    Kenney, Devin
    O'Connell, Aoife K.
    Montanaro, Paige
    Tseng, Anna E.
    Gertje, Hans P.
    Grosz, Kyle A.
    Ericsson, Maria
    Huber, Bertrand R.
    Kurnick, Susanna A.
    Subramaniam, Saravanan
    Kirkland, Thomas A.
    Walker, Joel R.
    Francis, Kevin P.
    Klose, Alexander D.
    Paragas, Neal
    Bosmann, Markus
    Saeed, Mohsan
    Balasuriya, Udeni B. R.
    Douam, Florian
    Crossland, Nicholas A.
    VIRUSES-BASEL, 2022, 14 (03):
  • [3] Effects of simeprevir on the replication of SARS-CoV-2 in vitro and in transgenic hACE2 mice
    Muturi, Elishiba
    Hong, Wei
    Li, Junhua
    Yang, Wan
    He, Jin
    Wei, Hongping
    Yang, Hang
    INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2022, 59 (01)
  • [4] Exploring the disruption of SARS-CoV-2 RBD binding to hACE2
    Carter, Camryn
    Airas, Justin
    Gladden, Haley
    Miller III, Bill R.
    Parish, Carol A.
    FRONTIERS IN CHEMISTRY, 2023, 11
  • [5] The pH Effects on SARS-CoV and SARS-CoV-2 Spike Proteins in the Process of Binding to hACE2
    Xie, Yixin
    Guo, Wenhan
    Lopez-Hernadez, Alan
    Teng, Shaolei
    Li, Lin
    PATHOGENS, 2022, 11 (02):
  • [6] Inhibition of a broad range of SARS-CoV-2 variants by antiviral phytochemicals in hACE2 mice
    Kim, Eun-Ha
    Lee, Ba Wool
    Ryu, Byeol
    Cho, Hyo Moon
    Kim, Se-Mi
    Jang, Seung-Gyu
    Casel, Mark Anthony B.
    Rollon, Rare
    Yoo, Ji-Seung
    Poo, Haryoung
    Oh, Won Keun
    Choi, Young Ki
    ANTIVIRAL RESEARCH, 2022, 204
  • [7] The Tissue Distribution of SARS-CoV-2 in Transgenic Mice With Inducible Ubiquitous Expression of hACE2
    Dolskiy, Alexander A.
    Gudymo, Andrey S.
    Taranov, Oleg S.
    Grishchenko, Irina V.
    Shitik, Ekaterina M.
    Prokopov, Dmitry Yu
    Soldatov, Vladislav O.
    Sobolevskaya, Elvira V.
    Bodnev, Sergey A.
    Danilchenko, Natalia V.
    Moiseeva, Anastasia A.
    Torzhkova, Polina Y.
    Bulanovich, Yulia A.
    Onhonova, Galina S.
    Ivleva, Elena K.
    Kubekina, Marina V.
    Belykh, Andrey E.
    Tregubchak, Tatiana V.
    Ryzhikov, Alexander B.
    Gavrilova, Elena V.
    Maksyutov, Rinat A.
    Deykin, Alexey V.
    Yudkin, Dmitry V.
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 8
  • [8] Comparison of transgenic and adenovirus hACE2 mouse models for SARS-CoV-2 infection
    Rathnasinghe, Raveen
    Strohmeier, Shirin
    Amanat, Fatima
    Gillespie, Virginia L.
    Krammer, Florian
    Garcia-Sastre, Adolfo
    Coughlan, Lynda
    Schotsaert, Michael
    Uccellini, Melissa B.
    EMERGING MICROBES & INFECTIONS, 2020, 9 (01) : 2433 - 2445
  • [9] Comparative pathology of the nasal epithelium in K18-hACE2 Tg mice, hACE2 Tg mice, and hamsters infected with SARS-CoV-2
    Yu, Pin
    Deng, Wei
    Bao, Linlin
    Qu, Yajin
    Xu, Yanfeng
    Zhao, Wenjie
    Han, Yunlin
    Qin, Chuan
    VETERINARY PATHOLOGY, 2022, 59 (04) : 602 - 612
  • [10] Engineering a NanoBiT biosensor for detecting angiotensin-converting enzyme-2 (hACE2) interaction with SARS-CoV-2 spike protein and screening the inhibitors to block hACE2 and spike interaction
    Lin, Cheng-Han
    Yang, Xin-Rui
    Lin, Meng-Wei
    Chang, Ho-Ju
    Lee, Che-Hsiung
    Lin, Chih-Sheng
    BIOSENSORS & BIOELECTRONICS, 2024, 263