KNODE-MPC: A Knowledge-Based Data-Driven Predictive Control Framework for Aerial Robots

被引:41
|
作者
Chee, Kong Yao [1 ]
Jiahao, Tom Z. [1 ]
Hsieh, M. Ani [1 ]
机构
[1] Univ Penn, Grasp Lab, Philadelphia, PA 19104 USA
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2022年 / 7卷 / 02期
基金
美国国家科学基金会;
关键词
Machine learning for robot control; model learning for control; model predictive control; MODEL; EQUATIONS;
D O I
10.1109/LRA.2022.3144787
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this letter, we consider the problem of deriving and incorporating accurate dynamic models for model predictive control (MPC) with an application to quadrotor control. MPC relies on precise dynamic models to achieve the desired closed-loop performance. However, the presence of uncertainties in complex systems and the environments they operate in poses a challenge in obtaining sufficiently accurate representations of the system dynamics. In this letter, we make use of a deep learning tool, knowledge-based neural ordinary differential equations (KNODE), to augment a model obtained from first principles. The resulting hybrid model encompasses both a nominal first-principle model and a neural network learnt from simulated or real-world experimental data. Using a quadrotor, we benchmark our hybrid model against a state-of-the-art Gaussian Process (GP) model and show that the hybrid model provides more accurate predictions of the quadrotor dynamics and is able to generalize beyond the training data. To improve closed-loop performance, the hybrid model is integrated into a novel MPC framework, known as KNODE-MPC. Results show that the integrated framework achieves 60.2% improvement in simulations and more than 21% in physical experiments, in terms of trajectory tracking performance.
引用
收藏
页码:2819 / 2826
页数:8
相关论文
共 50 条
  • [21] Data-driven model predictive control for continuous pharmaceutical manufacturing
    Vega-Zambrano, Consuelo
    Diangelakis, Nikolaos A.
    Charitopoulos, Vassilis M.
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2025, 672
  • [22] Data-driven predictive control for blast furnace ironmaking process
    Zeng, Jiu-sun
    Gao, Chuan-hou
    Su, Hong-ye
    COMPUTERS & CHEMICAL ENGINEERING, 2010, 34 (11) : 1854 - 1862
  • [23] Data-driven model predictive control for ships with Gaussian process
    Xu, Peilong
    Qin, Hongde
    Ma, Jingran
    Deng, Zhongchao
    Xue, Yifan
    OCEAN ENGINEERING, 2023, 268
  • [24] Data-driven rate-based integral predictive control with estimated prediction matrices
    Verheijen, P. C. N.
    Da Silva, G. R. Goncalves
    Lazar, M.
    2021 25TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2021, : 630 - 636
  • [25] Learning-based robust model predictive control with data-driven Koopman operators
    Wang, Meixi
    Lou, Xuyang
    Cui, Baotong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (09) : 3295 - 3321
  • [26] Data-driven model predictive control for precision irrigation management
    Bwambale, Erion
    Abagale, Felix K.
    Anornu, Geophrey K.
    SMART AGRICULTURAL TECHNOLOGY, 2023, 3
  • [27] Learning-based robust model predictive control with data-driven Koopman operators
    Meixi Wang
    Xuyang Lou
    Baotong Cui
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 3295 - 3321
  • [28] Data-driven predictive control of Hammerstein-Wiener systems based on subspace identification
    Luo, Xiao-Suo
    Song, Yong-Duan
    INFORMATION SCIENCES, 2018, 422 : 447 - 461
  • [29] Data-driven Model Predictive Control with Matrix Forgetting Factor
    Calderon, Horacio M.
    Schulz, Erik
    Oehlschlaegel, Thimo
    Werner, Herbert
    IFAC PAPERSONLINE, 2023, 56 (02): : 10077 - 10082
  • [30] Model Predictive Control (MPC) of an artificial pancreas with data-driven learning of multi-step-ahead blood glucose predictors
    Aiello, Eleonora Maria
    Jaloli, Mehrad
    Cescon, Marzia
    CONTROL ENGINEERING PRACTICE, 2024, 144