Analyzing the Impact of Memristor Variability on Crossbar Implementation of Regression Algorithms With Smart Weight Update Pulsing Techniques

被引:12
作者
Afshari, Sahra [1 ]
Musisi-Nkambwe, Mirembe [1 ]
Esqueda, Ivan Sanchez [1 ]
机构
[1] Arizona State Univ, Dept Elect Comp & Energy Engn, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
Memristors; Integrated circuit modeling; Training; Programming; Mathematical models; Convergence; Computer architecture; RRAM; crossbar array; variability; machine learning; stochastic regression; RESISTIVE RAM; IN-MEMORY; RRAM; DEVICE; 1T1R;
D O I
10.1109/TCSI.2022.3144240
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an extensive study of linear and logistic regression algorithms implemented with 1T1R memristor crossbars arrays. Using a sophisticated simulation platform that wraps circuit-level simulations of 1T1R crossbars and physics-based models of RRAM (memristors), we elucidate the impact of device variability on algorithm accuracy, convergence rate and precision. Moreover, a smart pulsing strategy is proposed for practical implementation of synaptic weight updates that can accelerate training in real crossbar architectures. Stochastic multi-variable linear regression shows robustness to memristor variability in terms of prediction accuracy but reveals impact on convergence rate and precision. Similarly, the stochastic logistic regression crossbar implementation reveals immunity to memristor variability as determined by negligible effects on image classification accuracy but indicates an impact on training performance manifested as reduced convergence rate and degraded precision.
引用
收藏
页码:2025 / 2034
页数:10
相关论文
共 55 条
[1]   SPICE Simulation of RRAM-Based Cross-Point Arrays Using the Dynamic Memdiode Model [J].
Aguirre, Fernando L. ;
Pazos, Sebastian M. ;
Palumbo, Felix ;
Sune, Jordi ;
Miranda, Enrique .
FRONTIERS IN PHYSICS, 2021, 9
[2]   Thickness-dependent monochalcogenide GeSe-based CBRAM or memory and artificial electronic synapses [J].
Ali, Asif ;
Abbas, Haider ;
Hussain, Muhammad ;
Jaffery, Syed Hassan Abbas ;
Hussain, Sajjad ;
Choi, Changhwan ;
Jung, Jongwan .
NANO RESEARCH, 2022, 15 (03) :2263-2277
[3]  
[Anonymous], 2006, PREDICTIVE TECHNOLOG
[4]   Voltage-controlled reverse filament growth boosts resistive switching memory [J].
Belmonte, Attilio ;
Celano, Umberto ;
Chen, Zhe ;
Radhaskrishnan, Janaki ;
Redolfi, Augusto ;
Clima, Sergiu ;
Richard, Olivier ;
Bender, Hugo ;
Kar, Gouri Sankar ;
Vandervorst, Wilfried ;
Goux, Ludovic .
NANO RESEARCH, 2018, 11 (08) :4017-4025
[5]   Challenges and Circuit Techniques for Energy-Efficient On-Chip Nonvolatile Memory Using Memristive Devices [J].
Chang, Meng-Fan ;
Lee, Albert ;
Chen, Pin-Cheng ;
Lin, Chrong Jung ;
King, Ya-Chin ;
Sheu, Shyh-Shyuan ;
Ku, Tzu-Kun .
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2015, 5 (02) :183-193
[6]  
Chen A, 2011, 2011 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM (IRPS)
[7]  
Chen LR, 2017, DES AUT TEST EUROPE, P19, DOI 10.23919/DATE.2017.7926952
[8]  
Chen PY, 2018, INT RELIAB PHY SYM
[9]  
Chen PY, 2015, ICCAD-IEEE ACM INT, P194, DOI 10.1109/ICCAD.2015.7372570
[10]   Compact Modeling of RRAM Devices and Its Applications in 1T1R and 1S1R Array Design [J].
Chen, Pai-Yu ;
Yu, Shimeng .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (12) :4022-4028