On Huppert's conjecture for G2(q), q ≥ 7

被引:12
作者
Tong-Viet, Hung P. [1 ]
Wakefield, Thomas P. [2 ]
机构
[1] Univ KwaZulu Natal, Sch Math Sci, ZA-3209 Pietermaritzburg, South Africa
[2] Youngstown State Univ, Dept Math & Stat, Youngstown, OH 44555 USA
关键词
MAXIMAL-SUBGROUPS; CHARACTER; SET;
D O I
10.1016/j.jpaa.2012.03.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite group and let cd(G) be the set of all complex irreducible character degrees of G. Bertram Huppert conjectured that if H is a finite nonAbelian simple group such that cd(G) = cd(H), then G congruent to H x A, where A is an Abelian group. In this paper, we verify the conjecture for the family of simple exceptional groups of Lie type G(2)(q) for q >= 7. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2720 / 2729
页数:10
相关论文
共 22 条
[1]  
Alavi S.H., 2008, INT J ALGEBRA, V2, P327
[2]   Character tables of parabolic subgroups of the Chevalley groups of type G2 [J].
An, JB ;
Huang, SC .
COMMUNICATIONS IN ALGEBRA, 2006, 34 (05) :1763-1792
[3]   Character degree graphs that are complete graphs [J].
Bianchi, Mariagrazia ;
Chillag, David ;
Lewis, Mark L. ;
Pacifici, Emanuele .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (03) :671-676
[4]  
Carter Roger W., 1993, FINITE GROUPS LIE TY
[5]  
Chang B., 1972, S MATH, V13, P395
[6]  
Conway J. H., 1984, ATLAS FINITE GROUPS
[7]   MAXIMAL-SUBGROUPS OF G2(2N) [J].
COOPERSTEIN, BN .
JOURNAL OF ALGEBRA, 1981, 70 (01) :23-36
[8]   ON FINITE RATIONAL GROUPS AND RELATED TOPICS [J].
FEIT, W ;
SEITZ, GM .
ILLINOIS JOURNAL OF MATHEMATICS, 1989, 33 (01) :103-131
[10]  
King O.H., 2005, SURVEYS COMBINATORIC, V327, P29, DOI [DOI 10.1017/CBO9780511734885.003, 10.1017/CBO9780511734885.003]