Artificial Neural Network Modeling on PM10, PM2.5, and NO2 Concentrations between Two Megacities without a Lockdown in Korea, for the COVID-19 Pandemic Period of 2020

被引:6
作者
Choi, Soo-Min [1 ]
Choi, Hyo [2 ]
机构
[1] Konkuk Univ, Dept Comp Engn, Chungju 27478, South Korea
[2] Atmospher & Ocean Disaster Res Inst, Kangnung 25563, South Korea
关键词
artificial neural network model; COVID-19; pandemic; air quality; PM10; PM2.5; NO2; root; mean square error; coefficient of determination; AIR-QUALITY;
D O I
10.3390/ijerph192316338
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The mutual relationship among daily averaged PM10, PM2.5, and NO2 concentrations in two megacities (Seoul and Busan) connected by the busiest highway in Korea was investigated using an artificial neural network model (ANN)-sigmoid function, for a novel coronavirus (COVID-19) pandemic period from 1 January to 31 December 2020. Daily and weekly mean concentrations of NO2 in 2020 under neither locked down cities, nor limitation of the activities of vehicles and people by the Korean Government have decreased by about 15%, and 12% in Seoul, and Busan cities, than the ones in 2019, respectively. PM (10) (PM2.5) concentration has also decreased by 15% (10%), and 12% (10%) in Seoul, and Busan, with a similar decline of NO2, causing an improvement in air quality in each city. Multilayer perception (MLP), which has a back-propagation training algorithm for a feed-forward artificial neural network technique with a sigmoid activation function was adopted to predict daily averaged PM10, PM2.5, and NO2 concentrations in two cities with their interplay. Root mean square error (RMSE) with the coefficient of determination (R2) evaluates the performance of the model between the predicted and measured values of daily mean PM10, PM2.5, and NO2, in Seoul were 2.251 with 0.882 (1.909 with 0.896; 1.913 with 0.892), 0.717 with 0.925 (0.955 with 0.930; 0.955 with 0.922), and 3.502 with 0.729 (2.808 with 0.746; 3.481 with 0.734), in 2 (5; 7) nodes in a single hidden layer. Similarly, they in Busan were 2.155 with 0.853 (1.519 with 0.896; 1.649 with 0.869), 0.692 with 0.914 (0.891 with 0.910; 1.211 with 0.883), and 2.747 with 0.667 (2.277 with 0.669; 2.137 with 0.689), respectively. The closeness of the predicted values to the observed ones shows a very high Pearson r correlation coefficient of over 0.932, except for 0.818 of NO2 in Busan. Modeling performance using IBM SPSS-v27 software on daily averaged PM10, PM2.5, and NO2 concentrations in each city were compared by scatter plots and their daily distributions between predicted and observed values.
引用
收藏
页数:22
相关论文
共 44 条
[21]   Modeling generalized statistical distributions of PM2.5 concentrations during the COVID-19 pandemic in Jakarta, Indonesia [J].
Warsono, Warsono ;
Antonio, Yeftanus ;
Yuwono, Slamet B. ;
Kurniasari, Dian ;
Suroso, Erdi ;
Yushananta, Prayudhy ;
Usman, Mustofa ;
Hadi, Sutopo .
DECISION SCIENCE LETTERS, 2021, 10 (03) :393-400
[22]   Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy [J].
Zoran, Maria A. ;
Savastru, Roxana S. ;
Savastru, Dan M. ;
Tautan, Marina N. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 738
[23]   The impact of PM2.5, PM10 and NO2 on Covid-19 severity in a sample of patients with multiple sclerosis: A case-control study [J].
Ponzano, Marta ;
Schiavetti, Irene ;
Bergamaschi, Roberto ;
Pisoni, Enrico ;
Bellavia, Andrea ;
Mallucci, Giulia ;
Carmisciano, Luca ;
Inglese, Matilde ;
Cordioli, Cinzia ;
Marfia, Girolama Alessandra ;
Cocco, Eleonora ;
Immovilli, Paolo ;
Pesci, Ilaria ;
Scandellari, Cinzia ;
Cavalla, Paola ;
Radaelli, Marta ;
Vianello, Marika ;
Vitetta, Francesca ;
Montepietra, Sara ;
Amato, Maria Pia ;
Fioretti, Cristina ;
Filippi, Massimo ;
Sartori, Arianna ;
Caleri, Francesca ;
Clerico, Marinella ;
Gallo, Antonio ;
Conte, Antonella ;
Clerici, Raffaella ;
De Luca, Giovanna ;
Boneschi, Filippo Martinelli ;
Cantello, Roberto ;
Calabrese, Massimiliano ;
Tortorella, Carla ;
Rovaris, Marco ;
Verrengia, Elena Pinuccia ;
Patti, Francesco ;
Morra, Vincenzo Brescia ;
Salvetti, Marco ;
Sormani, Maria Pia .
MULTIPLE SCLEROSIS AND RELATED DISORDERS, 2022, 68
[24]   The impact of PM2.5, PM10 and NO2 on Covid-19 severity in a sample of patients with multiple sclerosis: A case-control study [J].
Ponzano, Marta ;
Schiavetti, Irene ;
Bergamaschi, Roberto ;
Pisoni, Enrico ;
Bellavia, Andrea ;
Mallucci, Giulia ;
Carmisciano, Luca ;
Inglese, Matilde ;
Cordioli, Cinzia ;
Marfia, Girolama Alessandra ;
Cocco, Eleonora ;
Immovilli, Paolo ;
Pesci, Ilaria ;
Scandellari, Cinzia ;
Cavalla, Paola ;
Radaelli, Marta ;
Vianello, Marika ;
Vitetta, Francesca ;
Montepietra, Sara ;
Amato, Maria Pia ;
Fioretti, Cristina ;
Filippi, Massimo ;
Sartori, Arianna ;
Caleri, Francesca ;
Clerico, Marinella ;
Gallo, Antonio ;
Conte, Antonella ;
Clerici, Raffaella ;
De Luca, Giovanna ;
Boneschi, Filippo Martinelli ;
Cantello, Roberto ;
Calabrese, Massimiliano ;
Tortorella, Carla ;
Rovaris, Marco ;
Verrengia, Elena Pinuccia ;
Patti, Francesco ;
Morra, Vincenzo Brescia ;
Salvetti, Marco ;
Sormani, Maria Pia .
MULTIPLE SCLEROSIS AND RELATED DISORDERS, 2022, 68
[25]   Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2 - Results of the ESCAPE project [J].
Eeftens, Marloes ;
Tsai, Ming-Yi ;
Ampe, Christophe ;
Anwander, Bernhard ;
Beelen, Rob ;
Bellander, Tom ;
Cesaroni, Giulia ;
Cirach, Marta ;
Cyrys, Josef ;
de Hoogh, Kees ;
De Nazelle, Audrey ;
de Vocht, Frank ;
Declercq, Christophe ;
Dedele, Audrius ;
Eriksen, Kirsten ;
Galassi, Claudia ;
Grazuleviciene, Regina ;
Grivas, Georgios ;
Heinrich, Joachim ;
Hoffmann, Barbara ;
Iakovides, Minas ;
Ineichen, Alex ;
Katsouyanni, Klea ;
Korek, Michal ;
Kraemer, Ursula ;
Kuhlbusch, Thomas ;
Lanki, Timo ;
Madsen, Christian ;
Meliefste, Kees ;
Moelter, Anna ;
Mosler, Gioia ;
Nieuwenhuijsen, Mark ;
Oldenwening, Marieke ;
Pennanen, Arto ;
Probst-Hensch, Nicole ;
Quass, Ulrich ;
Raaschou-Nielsen, Ole ;
Ranzi, Andrea ;
Stephanou, Euripides ;
Sugiri, Dorothee ;
Udvardy, Orsolya ;
Vaskoevi, Eva ;
Weinmayr, Gudrun ;
Brunekreef, Bert ;
Hoek, Gerard .
ATMOSPHERIC ENVIRONMENT, 2012, 62 :303-317
[26]   Impact of Covid-19 partial lockdown on PM2.5, SO2, NO2, O3, and trace elements in PM2.5 in Hanoi, Vietnam [J].
Nguyen, Thi Phuong Mai ;
Bui, Thi Hieu ;
Nguyen, Manh Khai ;
Nguyen, Thi Hue ;
Vu, Van Tu ;
Pham, Hai Long .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (28) :41875-41885
[27]   Respiratory Deposition Dose of PM2.5 and PM10 Before, During and After COVID-19 Lockdown Phases in Megacity-Delhi, India [J].
Sadaf Fatima ;
Ajit Ahlawat ;
Sumit Kumar Mishra ;
Vijay Kumar Soni ;
Randeep Guleria .
MAPAN, 2022, 37 :891-900
[28]   Assessment of CO2 and aerosol (PM2.5, PM10, UFP) concentrations during the reopening of schools in the COVID-19 pandemic: The case of a metropolitan area in Central-Southern Spain [J].
Villanueva, Florentina ;
Notario, Alberto ;
Cabanas, Beatriz ;
Martin, Pilar ;
Salgado, Sagrario ;
Gabriel, Marta Fonseca .
ENVIRONMENTAL RESEARCH, 2021, 197
[29]   Impacts of partial to complete COVID-19 lockdown on NO2 and PM2.5 levels in major urban cities of Europe and USA [J].
Bar, Somnath ;
Parida, Bikash Ranjan ;
Mandal, Shyama Prasad ;
Pandey, Arvind Chandra ;
Kumar, Navneet ;
Mishra, Bibhudatta .
CITIES, 2021, 117
[30]   Quantifying changes in ambient NOx, O3 and PM10 concentrations in Austria during the COVID-19 related lockdown in spring 2020 [J].
C. Staehle ;
M Mayer ;
B. Kirchsteiger ;
V. Klaus ;
J. Kult-Herdin ;
C. Schmidt ;
S. Schreier ;
J. Karlicky ;
H. Trimmel ;
A. Kasper-Giebl ;
B. Scherllin-Pirscher ;
H. E. Rieder .
Air Quality, Atmosphere & Health, 2022, 15 :1993-2007