Higher epistasis in genetic algorithms

被引:2
作者
Iglesias, M. T. [1 ]
Penaranda, V. S. [2 ]
Vidal, C. [3 ]
Verschoren, A. [4 ]
机构
[1] Univ A Coruna, Fac Informat, Dept Matemat, La Coruna 15071, Spain
[2] Univ A Coruna, EUP Ferrol, Dept Matemat, Ferrol, Spain
[3] Univ A Coruna, Fac Informat, Dept Computac, La Coruna 15071, Spain
[4] Univ Antwerp, Dept Math & Comp Sci, Adm Hoofdgebouw, B-2020 Antwerp, Belgium
关键词
genetic algorithm; GA-hardness; epistasis; order; Walsh coefficients;
D O I
10.1017/S0004972708000233
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the k-epistasis of a fitness function over a search space. This concept is a natural generalization of that of epistasis, previously considered by Davidor, Suys and Verschoren and Van Hove and Verschoren [Y. Davidor, in: Foundations of genetic algorithms, Vol. 1, (1991), pp. 23-25; D. Suys and A. Verschoren, 'Proc Int. Conf on Intelligent Technologies in Human-Related Sciences (ITHURS'96), Vol. II (1996), pp. 251-258; H. Van Hove and A. Verschoren, Comput. Artificial Intell. 14 (1994), 271-277], for example. We completely characterize fitness functions whose k-epistasis is minimal: these are exactly the functions of order k. We also obtain an upper bound for the k-epistasis of nonnegative fitness functions.
引用
收藏
页码:225 / 243
页数:19
相关论文
共 50 条
  • [21] Detecting genetic epistasis by differential departure from independence
    Ruby Sharma
    Zeinab Sadeghian Tehrani
    Sajal Kumar
    Mingzhou Song
    Molecular Genetics and Genomics, 2022, 297 : 911 - 924
  • [22] Multary epistasis
    Iglesias, MT
    Vidal, C
    Suys, D
    Verschoren, A
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2001, 8 (04) : 651 - 671
  • [23] Genetic mapping of sterile genes with epistasis in backcross designs
    S Xie
    J Chen
    B Walsh
    Heredity, 2014, 112 : 165 - 171
  • [24] Modelling epistasis in genetic disease using Petri nets, evolutionary computation and frequent itemset mining
    Mayo, Michael
    Beretta, Lorenzo
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (04) : 4006 - 4013
  • [25] Epi-GTBN: an approach of epistasis mining based on genetic Tabu algorithm and Bayesian network
    Guo, Yang
    Zhong, Zhiman
    Yang, Chen
    Hu, Jiangfeng
    Jiang, Yaling
    Liang, Zizhen
    Gao, Hui
    Liu, Jianxiao
    BMC BIOINFORMATICS, 2019, 20 (01)
  • [26] Epi-GTBN: an approach of epistasis mining based on genetic Tabu algorithm and Bayesian network
    Yang Guo
    Zhiman Zhong
    Chen Yang
    Jiangfeng Hu
    Yaling Jiang
    Zizhen Liang
    Hui Gao
    Jianxiao Liu
    BMC Bioinformatics, 20
  • [27] Overdominance and epistasis are important for the genetic basis of heterosis in Brassica rapa
    Dong, De-Kun
    Cao, Jia-Shu
    Shi, Kai
    Liu, Le-Cheng
    HORTSCIENCE, 2007, 42 (05) : 1207 - 1211
  • [28] Computing epistasis of template functions through Walsh transforms
    Iglesias, MT
    Vidal, C
    Verschoren, A
    COMPUTING AND INFORMATICS, 2005, 24 (03) : 263 - 279
  • [29] Epistasis as a source of increased additive genetic variance at population bottlenecks
    Cheverud, JM
    Routman, EJ
    EVOLUTION, 1996, 50 (03) : 1042 - 1051
  • [30] Epistasis interaction of QTL effects as a genetic parameter influencing estimation of the genetic additive effect
    Bocianowski, Jan
    GENETICS AND MOLECULAR BIOLOGY, 2013, 36 (01) : 93 - 100