Higher epistasis in genetic algorithms

被引:2
|
作者
Iglesias, M. T. [1 ]
Penaranda, V. S. [2 ]
Vidal, C. [3 ]
Verschoren, A. [4 ]
机构
[1] Univ A Coruna, Fac Informat, Dept Matemat, La Coruna 15071, Spain
[2] Univ A Coruna, EUP Ferrol, Dept Matemat, Ferrol, Spain
[3] Univ A Coruna, Fac Informat, Dept Computac, La Coruna 15071, Spain
[4] Univ Antwerp, Dept Math & Comp Sci, Adm Hoofdgebouw, B-2020 Antwerp, Belgium
关键词
genetic algorithm; GA-hardness; epistasis; order; Walsh coefficients;
D O I
10.1017/S0004972708000233
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the k-epistasis of a fitness function over a search space. This concept is a natural generalization of that of epistasis, previously considered by Davidor, Suys and Verschoren and Van Hove and Verschoren [Y. Davidor, in: Foundations of genetic algorithms, Vol. 1, (1991), pp. 23-25; D. Suys and A. Verschoren, 'Proc Int. Conf on Intelligent Technologies in Human-Related Sciences (ITHURS'96), Vol. II (1996), pp. 251-258; H. Van Hove and A. Verschoren, Comput. Artificial Intell. 14 (1994), 271-277], for example. We completely characterize fitness functions whose k-epistasis is minimal: these are exactly the functions of order k. We also obtain an upper bound for the k-epistasis of nonnegative fitness functions.
引用
收藏
页码:225 / 243
页数:19
相关论文
共 50 条
  • [1] Epistasis in genetic algorithms revisited
    Rochet, S
    INFORMATION SCIENCES, 1997, 102 (1-4) : 133 - 155
  • [2] Effect of epistasis on the performance of genetic algorithms
    Jafari, Sajad
    Kapitaniak, Tomasz
    Rajagopal, Karthikeyan
    Viet-Thanh Pham
    Alsaadi, Fawaz E.
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2019, 20 (02): : 109 - 116
  • [3] Epistasis for real encoding in genetic algorithms
    Rochet, S
    Slimane, M
    Venturini, G
    ANZIIS 96 - 1996 AUSTRALIAN NEW ZEALAND CONFERENCE ON INTELLIGENT INFORMATION SYSTEMS, PROCEEDINGS, 1996, : 268 - 271
  • [4] A kind of epistasis-tunable test functions for genetic algorithms
    Mo, Hongqiang
    Li, Zhong
    Zhu, Chunmei
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (08):
  • [5] How efficient are genetic algorithms to solve high epistasis deceptive problems?
    Gras, Robin
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 242 - 249
  • [6] Linkage identification based on epistasis measures to realize efficient genetic algorithms
    Munetomo, M
    CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 1332 - 1337
  • [7] An epistasis measure based on the analysis of variance for the realcoded representation in genetic algorithms
    Chan, KY
    Aydin, ME
    Fogarty, TC
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 297 - 304
  • [8] Genetic epistasis in Whipple
    Martinetti, Miryam
    Pasi, Annamaria
    Biagi, Federico
    Badulli, Carla
    Garlaschelli, Fabio
    Pizzochero, Cinzia
    Salvaneschi, Laura
    Corazza, Gino R.
    TISSUE ANTIGENS, 2009, 73 (05): : 498 - 499
  • [9] Hybridizing genetic algorithms with ICA in higher dimension
    Górriz, JM
    Puntonet, CG
    Salmerón, M
    Ruiz, FR
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, 2004, 3195 : 414 - 421
  • [10] REDETERMINATION OF GENETIC FORMULAS AND THE EPISTASIS
    STROGANOV, AN
    KITLAEV, BN
    CHIKAEV, RA
    GENETIKA, 1989, 25 (08): : 1514 - 1518