On p-nilpotency of finite groups with some subgroups π-quasinormally embedded

被引:107
作者
Li, YM [1 ]
Wang, YM
Wei, HQ
机构
[1] Guangdong Inst Educ, Dept Math, Guangzhou 510310, Peoples R China
[2] Zhongshan Univ, Dept Math, Guangzhou 510275, Peoples R China
[3] Guangxi Teachers Coll, Dept Math, Nanning 530001, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
maximal subgroup; 2-maximal subgroup; minimal subgroup; subgroup of prime square order; 7 pi-quasinormally embedded subgroup; p-nilpotent group;
D O I
10.1007/s10474-005-0225-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup H of a group G is said to be pi-quasinormal in G if it permutes with every Sylow subgroup of G, and H is said to be pi-quasinormally embedded in G if for each prime dividing the order of H, a Sylow p-subgroup of H is also a Sylow p-subgroup of some pi-quasinormal subgroups of G. We characterize p-nilpotentcy of finite groups with the assumption that some maximal subgroups, 2-maximal subgroups, minimal subgroups and 2-minimal subgroups are pi-quasinormally embedded, respectively.
引用
收藏
页码:283 / 298
页数:16
相关论文
共 50 条
[31]   On NH-embedded and S-quasinormally embedded subgroups of finite groups [J].
Zheng, Weicheng ;
Cui, Liang ;
Meng, Wei ;
Lu, Jiakuan .
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2024, 17 (01) :67-73
[32]   On π-quasinormally embedded subgroups of finite group [J].
Li, YM ;
Wang, YM .
JOURNAL OF ALGEBRA, 2004, 281 (01) :109-123
[33]   On SS-Quasinormal and S-Quasinormally Embedded Subgroups of Finite Groups [J].
Shen, Zhencai ;
Li, Shirong ;
Zhang, Jinshan .
MATHEMATICAL NOTES, 2014, 95 (1-2) :267-276
[34]   On SS-quasinormal and S-quasinormally embedded subgroups of finite groups [J].
Zhencai Shen ;
Shirong Li ;
Jinshan Zhang .
Mathematical Notes, 2014, 95 :267-276
[35]   On finite groups with some Hall normally embedded subgroups [J].
Meng, Wei ;
Lu, Jiakuan .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025, 24 (08)
[36]   FINITE GROUPS WITH SOME SS-EMBEDDED SUBGROUPS [J].
Zhao, Tao .
INTERNATIONAL JOURNAL OF GROUP THEORY, 2013, 2 (03) :63-70
[37]   Finite groups with n-embedded subgroups [J].
Guo, Qinghong ;
He, Xuanli ;
Huang, Muhong .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2021, 31 (07) :1419-1428
[38]   Finite groups with systems of Σ-embedded subgroups [J].
SKIBA Alexander N. .
ScienceChina(Mathematics), 2011, 54 (09) :1909-1926
[39]   Finite groups with some weakly s-supplementally embedded subgroups [J].
Zhao, Tao .
TURKISH JOURNAL OF MATHEMATICS, 2013, 37 (05) :762-769
[40]   SOME SUFFICIENT CONDITIONS IMPLYING NILPOTENCY OF FINITE GROUPS [J].
Kong, Qingjun ;
Wang, Shuai .
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (40) :122-125