On p-nilpotency of finite groups with some subgroups π-quasinormally embedded

被引:106
作者
Li, YM [1 ]
Wang, YM
Wei, HQ
机构
[1] Guangdong Inst Educ, Dept Math, Guangzhou 510310, Peoples R China
[2] Zhongshan Univ, Dept Math, Guangzhou 510275, Peoples R China
[3] Guangxi Teachers Coll, Dept Math, Nanning 530001, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
maximal subgroup; 2-maximal subgroup; minimal subgroup; subgroup of prime square order; 7 pi-quasinormally embedded subgroup; p-nilpotent group;
D O I
10.1007/s10474-005-0225-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup H of a group G is said to be pi-quasinormal in G if it permutes with every Sylow subgroup of G, and H is said to be pi-quasinormally embedded in G if for each prime dividing the order of H, a Sylow p-subgroup of H is also a Sylow p-subgroup of some pi-quasinormal subgroups of G. We characterize p-nilpotentcy of finite groups with the assumption that some maximal subgroups, 2-maximal subgroups, minimal subgroups and 2-minimal subgroups are pi-quasinormally embedded, respectively.
引用
收藏
页码:283 / 298
页数:16
相关论文
共 50 条
  • [21] Hall s-Semiembedded Subgroups and p-Nilpotency of Finite Groups
    Guo, Yanhui
    Li, Xianhua
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2018, 42 (03) : 367 - 374
  • [22] A CRITERION OF p-NILPOTENCY OF FINITE GROUPS
    Zhang, Xinjian
    Li, Xianhua
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (10) : 3652 - 3657
  • [23] Second Maximal Subgroups of a Sylow p-Subgroup and the p-Nilpotency of Finite Groups
    Y. Xu
    X. H. Li
    Ukrainian Mathematical Journal, 2014, 66 : 775 - 780
  • [24] Second Maximal Subgroups of a Sylow p-Subgroup and the p-Nilpotency of Finite Groups
    Xu, Y.
    Li, X. H.
    UKRAINIAN MATHEMATICAL JOURNAL, 2014, 66 (05) : 775 - 780
  • [25] New characterizations of p-nilpotency of finite groups
    Kong, Qingjun
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (11)
  • [26] New criteria for p-nilpotency of finite groups
    Miao, Long
    Guo, Wenbin
    Shum, K. P.
    COMMUNICATIONS IN ALGEBRA, 2007, 35 (03) : 965 - 974
  • [27] On S-Quasinormally Embedded Subgroups of Finite Groups
    Shen, Z.
    Zhang, J.
    Chen, G.
    Chen, Y.
    MATHEMATICAL NOTES, 2017, 101 (3-4) : 735 - 740
  • [28] New criteria for p-nilpotency of finite groups
    Zhang, Xinjian
    Miao, Long
    Zhang, Jia
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2018, 25 (04) : 481 - 493
  • [29] On S-quasinormally embedded subgroups of finite groups
    Z. Shen
    J. Zhang
    G. Chen
    Y. Chen
    Mathematical Notes, 2017, 101 : 735 - 740
  • [30] On p-Cover-Avoid and S-Quasinormally Embedded Subgroups in Finite Groups
    Xuan Li HE1
    2. College of Mathematics and Information Science
    3. Lingnan College and Department of Mathematics
    Journal of Mathematical Research with Applications, 2010, (04) : 743 - 750