On p-nilpotency of finite groups with some subgroups π-quasinormally embedded

被引:106
|
作者
Li, YM [1 ]
Wang, YM
Wei, HQ
机构
[1] Guangdong Inst Educ, Dept Math, Guangzhou 510310, Peoples R China
[2] Zhongshan Univ, Dept Math, Guangzhou 510275, Peoples R China
[3] Guangxi Teachers Coll, Dept Math, Nanning 530001, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
maximal subgroup; 2-maximal subgroup; minimal subgroup; subgroup of prime square order; 7 pi-quasinormally embedded subgroup; p-nilpotent group;
D O I
10.1007/s10474-005-0225-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup H of a group G is said to be pi-quasinormal in G if it permutes with every Sylow subgroup of G, and H is said to be pi-quasinormally embedded in G if for each prime dividing the order of H, a Sylow p-subgroup of H is also a Sylow p-subgroup of some pi-quasinormal subgroups of G. We characterize p-nilpotentcy of finite groups with the assumption that some maximal subgroups, 2-maximal subgroups, minimal subgroups and 2-minimal subgroups are pi-quasinormally embedded, respectively.
引用
收藏
页码:283 / 298
页数:16
相关论文
共 50 条
  • [1] On p-nilpotency of finite groups with some subgroups π-quasinormally embedded
    Yangming Li
    Yanming Wang
    Huaquan Wei
    Acta Mathematica Hungarica, 2005, 108 : 283 - 298
  • [2] On Hall normally embedded subgroups and the p-nilpotency of finite groups
    He, Xuanli
    Wang, Jing
    Sun, Qinhui
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (04) : 1428 - 1437
  • [3] m-embedded Subgroups and p-nilpotency of Finite Groups
    Xu, Yong
    Zhang, Xinjian
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (04): : 884 - 889
  • [4] The p-Nilpotency of Finite Groups with Some Weakly Pronormal Subgroups
    Jianjun Liu
    Jian Chang
    Guiyun Chen
    Czechoslovak Mathematical Journal, 2020, 70 : 805 - 816
  • [5] The p-Nilpotency of Finite Groups with Some Weakly Pronormal Subgroups
    Liu, Jianjun
    Chang, Jian
    Chen, Guiyun
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (03) : 805 - 816
  • [6] On p-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups
    Trofimuk, A.
    ALGEBRA AND DISCRETE MATHEMATICS, 2020, 29 (01): : 139 - 146
  • [7] On p-nilpotency of finite groups with some c-supplemented subgroups of prime power order
    Li, YM
    Wang, YM
    Wei, HQ
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2006, 68 (1-2): : 77 - 88
  • [8] C*-supplemented subgroups and p-nilpotency of finite groups
    Wei H.
    Wang Y.
    Ukrainian Mathematical Journal, 2007, 59 (8) : 1121 - 1129
  • [9] On normalizers of Sylow subgroups and p-nilpotency of finite groups
    Xu, Yong
    Li, Xianhua
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, (42): : 907 - 915
  • [10] Permutability of minimal subgroups and p-nilpotency of finite groups
    Guo Xiuyun
    K. P. Shum
    Israel Journal of Mathematics, 2003, 136 (1) : 145 - 155