On p-nilpotency of finite groups with some subgroups π-quasinormally embedded

被引:110
作者
Li, YM [1 ]
Wang, YM
Wei, HQ
机构
[1] Guangdong Inst Educ, Dept Math, Guangzhou 510310, Peoples R China
[2] Zhongshan Univ, Dept Math, Guangzhou 510275, Peoples R China
[3] Guangxi Teachers Coll, Dept Math, Nanning 530001, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
maximal subgroup; 2-maximal subgroup; minimal subgroup; subgroup of prime square order; 7 pi-quasinormally embedded subgroup; p-nilpotent group;
D O I
10.1007/s10474-005-0225-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup H of a group G is said to be pi-quasinormal in G if it permutes with every Sylow subgroup of G, and H is said to be pi-quasinormally embedded in G if for each prime dividing the order of H, a Sylow p-subgroup of H is also a Sylow p-subgroup of some pi-quasinormal subgroups of G. We characterize p-nilpotentcy of finite groups with the assumption that some maximal subgroups, 2-maximal subgroups, minimal subgroups and 2-minimal subgroups are pi-quasinormally embedded, respectively.
引用
收藏
页码:283 / 298
页数:16
相关论文
共 17 条
[1]   The influence of minimal subgroups on the structure of finite groups [J].
Asaad, M ;
Csörgö, P .
ARCHIV DER MATHEMATIK, 1999, 72 (06) :401-404
[2]   On S-quasinormally embedded subgroups of finite groups [J].
Asaad, M ;
Heliel, AA .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 165 (02) :129-135
[3]   On minimal subgroups of finite groups [J].
Ballester-Bolinches, A ;
Pedraza-Aguilera, MC .
ACTA MATHEMATICA HUNGARICA, 1996, 73 (04) :335-342
[4]   Sufficient conditions for supersolubility of finite groups [J].
Ballester-Bolinches, A ;
Pedraza-Aguilera, MC .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 127 (02) :113-118
[5]   ETA-NORMALIZERS AND LOCAL DEFINITIONS OF SATURATED FORMATIONS OF FINITE-GROUPS [J].
BALLESTERBOLINCHES, A .
ISRAEL JOURNAL OF MATHEMATICS, 1989, 67 (03) :312-326
[6]  
Deskins WE., 1963, MATH Z, V82, P125, DOI DOI 10.1007/BF01111801
[7]  
Doerk K, 1992, Finite solvable groups
[8]  
Gorenstein D., 2007, FINITE GROUPS
[9]   Cover-avoidance properties and the structure of finite groups [J].
Guo, XY ;
Shun, KP .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 181 (2-3) :297-308
[10]  
Huppert B., 1968, ENDLICHE GRUPPEN, VI