Ankylosin spondylitis (AS) is an arthritis with symptoms visible in medical imagery. This paper proposes, to the authors' best knowledge, the first use of statistical machine learning- and deep learning-based classifiers to detect erosion, an early AS symptom, via analysis of computed tomography (CT) imagery, giving some consideration to patient age in so doing. We used gray-level co-occurrence matrices and local binary patterns to generate input features to machine learning algorithms, specifically k-nearest neighbors (k-NN) and random forest. Deep learning solutions based on a modified InceptionV3 architecture were designed and tested, with one classifier produced by training with a cross-entropy loss function and another produced by additionally seeking to minimize validation loss. We found that the random forest classifiers outperform the k-NN classifiers and achieve an eightfold cross-validation average accuracy, recall, and area under receiver operator characteristic curve (ROC AUC) of 96.0%, 92.9%, and 0.97, respectively, for erosion vs. young control patients, and 82.4%, 80.6%, and 0.91, respectively, for erosion vs. old control patients. We found that the deep learning classifier trained without minimizing validation loss was best and achieves an eightfold cross-validation accuracy, recall, and ROC AUC of 99.0%, 97.5%, and 0.97, respectively, for erosion vs. all (combined young and old) control patients; this classifier outperforms a musculoskeletal radiologist with 9 years of experience in raw sensitivity and specificity by8.4% and 9.5%, respectively. Despite the relatively small dataset on which we trained and cross-validated, our results indicate the potential of machine and deep learning to aid AS diagnosis, and further research using larger datasets should be conducted. (C) 2020 Published by Elsevier Ltd.