Penalized empirical likelihood for quantile regression with missing covariates and auxiliary information

被引:4
作者
Shen, Yu [1 ]
Liang, Han-Ying [1 ]
Fan, Guo-Liang [2 ]
机构
[1] Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R China
[2] Anhui Polytech Univ, Sch Math & Phys, Wuhu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Auxiliary information; Missing at random; Penalized empirical likelihood; Quantile regression; Variable selection; VARIABLE SELECTION; LINEAR-MODELS;
D O I
10.1080/03610926.2017.1335413
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Based on the inverse probability weight method, we, in this article, construct the empirical likelihood (EL) and penalized empirical likelihood (PEL) ratios of the parameter in the linear quantile regression model when the covariates are missing at random, in the presence and absence of auxiliary information, respectively. It is proved that the EL ratio admits a limiting Chi-square distribution. At the same time, the asymptotic normality of the maximum EL and PEL estimators of the parameter is established. Also, the variable selection of the model in the presence and absence of auxiliary information, respectively, is discussed. Simulation study and a real data analysis are done to evaluate the performance of the proposed methods.
引用
收藏
页码:2001 / 2021
页数:21
相关论文
共 32 条
[1]  
[Anonymous], 1987, Statistical analysis with missing data
[2]  
Barro R. J., 2004, Economic growth, V2nd ed.
[3]  
CHEN JH, 1993, BIOMETRIKA, V80, P107, DOI 10.1093/biomet/80.1.107
[4]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[5]   METHODOLOGY AND ALGORITHMS OF EMPIRICAL LIKELIHOOD [J].
HALL, P ;
LASCALA, B .
INTERNATIONAL STATISTICAL REVIEW, 1990, 58 (02) :109-127
[6]  
Hall P, 2013, Springer Series in Statistics
[7]   REGRESSION QUANTILES [J].
KOENKER, R ;
BASSETT, G .
ECONOMETRICA, 1978, 46 (01) :33-50
[8]   Goodness of fit and related inference processes for quantile regression [J].
Koenker, R ;
Machado, JAF .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (448) :1296-1310
[9]  
Koenker R., 2005, Quantile Regression, DOI [10.1017/CBO9780511754098, DOI 10.1017/CBO9780511754098]
[10]   Penalized empirical likelihood and growing dimensional general estimating equations [J].
Leng, Chenlei ;
Tang, Cheng Yong .
BIOMETRIKA, 2012, 99 (03) :703-716