Geometric Quantum Noise of Spin

被引:18
作者
Shnirman, Alexander [1 ,2 ,6 ]
Gefen, Yuval [3 ,4 ]
Saha, Arijit [5 ]
Burmistrov, Igor S. [6 ,7 ]
Kiselev, Mikhail N. [8 ]
Altland, Alexander [9 ]
机构
[1] Karlsruhe Inst Technol, Inst Theorie Kondensierten Mat, D-76128 Karlsruhe, Germany
[2] Karlsruhe Inst Technol, DFG Ctr Funct Nanostruct CFN, D-76128 Karlsruhe, Germany
[3] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
[4] Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[5] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland
[6] RAS, LD Landau Theoret Phys Inst, Moscow 119334, Russia
[7] Moscow Inst Phys & Technol, Moscow 141700, Russia
[8] Abdus Salaam Int Ctr Theoret Phys, I-34014 Trieste, Italy
[9] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
基金
俄罗斯科学基金会;
关键词
STONER INSTABILITY; DYNAMICS; FLUCTUATIONS; PHASE;
D O I
10.1103/PhysRevLett.114.176806
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The presence of geometric phases is known to affect the dynamics of the systems involved. Here, we consider a quantum degree of freedom, moving in a dissipative environment, whose dynamics is described by a Langevin equation with quantum noise. We show that geometric phases enter the stochastic noise terms. Specifically, we consider small ferromagnetic particles (nanomagnets) or quantum dots close to Stoner instability, and investigate the dynamics of the total magnetization in the presence of tunneling coupling to the metallic leads. We generalize the Ambegaokar-Eckern-Schon effective action and the corresponding semiclassical equations of motion from the U(1) case of the charge degree of freedom to the SU(2) case of the magnetization. The Langevin forces (torques) in these equations are strongly influenced by the geometric phase. As a first but nontrivial application, we predict low temperature quantum diffusion of the magnetization on the Bloch sphere, which is governed by the geometric phase. We propose a protocol for experimental observation of this phenomenon.
引用
收藏
页数:5
相关论文
共 25 条
  • [11] Spin-torque shot noise in magnetic tunnel junctions
    Chudnovskiy, A. L.
    Swiebodzinski, J.
    Kamenev, A.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (06)
  • [12] QUANTUM DYNAMICS OF A SUPERCONDUCTING TUNNEL JUNCTION
    ECKERN, U
    SCHON, G
    AMBEGAOKAR, V
    [J]. PHYSICAL REVIEW B, 1984, 30 (11): : 6419 - 6431
  • [13] A phenomenological theory of damping in ferromagnetic materials
    Gilbert, TL
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (06) : 3443 - 3449
  • [14] Kinetic theory of fluctuations in conducting systems
    Gutman, DB
    Mirlin, AD
    Gefen, Y
    [J]. PHYSICAL REVIEW B, 2005, 71 (08):
  • [15] Kamenev A., 2011, Field Theory of Non-Equilibrium Systems, DOI DOI 10.1017/CBO9781139003667
  • [16] Voltage dependence of Landau-Lifshitz-Gilbert damping of spin in a current-driven tunnel junction
    Katsura, Hosho
    Balatsky, Alexander V.
    Nussinov, Zohar
    Nagaosa, Naoto
    [J]. PHYSICAL REVIEW B, 2006, 73 (21)
  • [17] Interplay of spin and charge channels in zero-dimensional systems - art. no. 066805
    Kiselev, MN
    Gefen, Y
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (06)
  • [18] Mesoscopic magnetization fluctuations for metallic grains close to the Stoner instability
    Kurland, IL
    Aleiner, IL
    Altshuler, BL
    [J]. PHYSICAL REVIEW B, 2000, 62 (22) : 14886 - 14897
  • [19] Bang-bang control of fullerene qubits using ultrafast phase gates
    Morton, JJL
    Tyryshkin, AM
    Ardavan, A
    Benjamin, SC
    Porfyrakis, K
    Lyon, SA
    Briggs, GAD
    [J]. NATURE PHYSICS, 2006, 2 (01) : 40 - 43
  • [20] A MOLECULAR BEAM RESONANCE METHOD WITH SEPARATED OSCILLATING FIELDS
    RAMSEY, NF
    [J]. PHYSICAL REVIEW, 1950, 78 (06): : 695 - 699