Geometric Quantum Noise of Spin

被引:18
作者
Shnirman, Alexander [1 ,2 ,6 ]
Gefen, Yuval [3 ,4 ]
Saha, Arijit [5 ]
Burmistrov, Igor S. [6 ,7 ]
Kiselev, Mikhail N. [8 ]
Altland, Alexander [9 ]
机构
[1] Karlsruhe Inst Technol, Inst Theorie Kondensierten Mat, D-76128 Karlsruhe, Germany
[2] Karlsruhe Inst Technol, DFG Ctr Funct Nanostruct CFN, D-76128 Karlsruhe, Germany
[3] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
[4] Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[5] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland
[6] RAS, LD Landau Theoret Phys Inst, Moscow 119334, Russia
[7] Moscow Inst Phys & Technol, Moscow 141700, Russia
[8] Abdus Salaam Int Ctr Theoret Phys, I-34014 Trieste, Italy
[9] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
基金
俄罗斯科学基金会;
关键词
STONER INSTABILITY; DYNAMICS; FLUCTUATIONS; PHASE;
D O I
10.1103/PhysRevLett.114.176806
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The presence of geometric phases is known to affect the dynamics of the systems involved. Here, we consider a quantum degree of freedom, moving in a dissipative environment, whose dynamics is described by a Langevin equation with quantum noise. We show that geometric phases enter the stochastic noise terms. Specifically, we consider small ferromagnetic particles (nanomagnets) or quantum dots close to Stoner instability, and investigate the dynamics of the total magnetization in the presence of tunneling coupling to the metallic leads. We generalize the Ambegaokar-Eckern-Schon effective action and the corresponding semiclassical equations of motion from the U(1) case of the charge degree of freedom to the SU(2) case of the magnetization. The Langevin forces (torques) in these equations are strongly influenced by the geometric phase. As a first but nontrivial application, we predict low temperature quantum diffusion of the magnetization on the Bloch sphere, which is governed by the geometric phase. We propose a protocol for experimental observation of this phenomenon.
引用
收藏
页数:5
相关论文
共 25 条
  • [1] Berry phase for a ferromagnet with fractional spin
    Abanov, AG
    Abanov, A
    [J]. PHYSICAL REVIEW B, 2002, 65 (18) : 1844071 - 18440711
  • [2] Inelastic electron transport in granular arrays
    Altland, A.
    Glazman, L. I.
    Kamenev, A.
    Meyer, J. S.
    [J]. ANNALS OF PHYSICS, 2006, 321 (11) : 2566 - 2603
  • [3] Transient fluctuation relations for time-dependent particle transport
    Altland, Alexander
    De Martino, Alessandro
    Egger, Reinhold
    Narozhny, Boris
    [J]. PHYSICAL REVIEW B, 2010, 82 (11)
  • [4] QUANTUM DYNAMICS OF TUNNELING BETWEEN SUPERCONDUCTORS
    AMBEGAOKAR, V
    ECKERN, U
    SCHON, G
    [J]. PHYSICAL REVIEW LETTERS, 1982, 48 (25) : 1745 - 1748
  • [5] Stochastic dynamics of magnetization in a ferromagnetic nanoparticle out of equilibrium
    Basko, Denis M.
    Vavilov, Maxim G.
    [J]. PHYSICAL REVIEW B, 2009, 79 (06)
  • [6] Current-induced switching in transport through anisotropic magnetic molecules
    Bode, Niels
    Arrachea, Liliana
    Lozano, Gustavo S.
    Nunner, Tamara S.
    von Oppen, Felix
    [J]. PHYSICAL REVIEW B, 2012, 85 (11)
  • [7] THERMAL FLUCTUATIONS OF A SINGLE-DOMAIN PARTICLE
    BROWN, WF
    [J]. PHYSICAL REVIEW, 1963, 130 (05): : 1677 - +
  • [8] Exact solution for spin and charge correlations in quantum dots: Effect of level fluctuations and Zeeman splitting
    Burmistrov, I. S.
    Gefen, Yuval
    Kiselev, M. N.
    [J]. PHYSICAL REVIEW B, 2012, 85 (15)
  • [9] Spin and charge correlations in quantum dots: An exact solution
    Burmistrov, I. S.
    Gefen, Yu.
    Kiselev, M. N.
    [J]. JETP LETTERS, 2010, 92 (03) : 179 - 184
  • [10] Bylander J, 2011, NAT PHYS, V7, P565, DOI [10.1038/nphys1994, 10.1038/NPHYS1994]