Noise reduction of FBG sensor signal by using a Wavelet Transform

被引:3
作者
Cho, Yo-Han [1 ]
Song, Minho [1 ]
机构
[1] Chonbuk Natl Univ, Div Elect Engn, Jeonju 561756, South Korea
来源
OPTICAL SENSORS 2011 AND PHOTONIC CRYSTAL FIBERS V | 2011年 / 8073卷
关键词
Temperature sensor; FBG; Sagnac interferometer; Gaussian curve-fitting; wavelet transform;
D O I
10.1117/12.887186
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
We constructed a FBG (fiber Bragg grating) sensor system based on a fiber-optic Sagnac interferometer. A fiber-optic laser source is used as a strong light source to attain high signal-to-noise ratio. However the unstable output power and coherence noises of the fiber laser made it hard to separate the FBG signals from the interference signals of the fiber coils. To reduce noises and extract FBG sensor signals, we used a Gaussian curve-fitting and a wavelet transform. The wavelet transform is a useful tool for analyzing and denoising output signals. The feasibility of the wavelet transform denoising process is presented with the preliminary experimental results, which showed much better accuracy than the case with only the Gaussian curve-fitting algorithm.
引用
收藏
页数:6
相关论文
共 50 条
[41]   Selective noise filtration of image signals using wavelet transform [J].
Ugweje, OC .
MEASUREMENT, 2004, 36 (3-4) :279-287
[42]   Noise elimination on ultrasonic CVIB calculation using wavelet transform [J].
Qi, Y ;
Pan, DL ;
Bai, J .
IEEE-EMBS ASIA PACIFIC CONFERENCE ON BIOMEDICAL ENGINEERING - PROCEEDINGS, PTS 1 & 2, 2000, :312-313
[43]   A method of reducing blocky noise using inverse wavelet transform [J].
Goto, T ;
Ishikawa, M .
Proceedings of the Sixth IASTED International Conference on Signal and Image Processing, 2004, :167-172
[44]   Using wavelet transform for feature extraction from EEG signal [J].
Lhotska, Lenka ;
Gerla, Vaclav ;
Bukartyk, Jiri ;
Krajca, Vladimir ;
Petranek, Svojmil .
BIOSIGNALS 2008: PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON BIO-INSPIRED SYSTEMS AND SIGNAL PROCESSING, VOL 1, 2008, :236-+
[45]   ECG Signal Compression using Compressive Sensing and Wavelet Transform [J].
Mishra, Akanksha ;
Thakkar, Falgun ;
Modi, Chintan ;
Kher, Rahul .
2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, :3404-3407
[46]   Doppler signal processing of blood flow using a wavelet transform [J].
Matani, A ;
Oshiro, O ;
Chihara, K .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1996, 35 (5B) :3131-3134
[47]   Combined edge detection using wavelet transform and signal registration [J].
Heric, Dusan ;
Zazula, Damjan .
IMAGE AND VISION COMPUTING, 2007, 25 (05) :652-662
[48]   A UNIVERSAL ECG SIGNAL CLASSIFICATION SYSTEM USING THE WAVELET TRANSFORM [J].
Daqrouq, K. ;
Alkhateeb, A. ;
Ahmad, W. ;
Khalaf, E. ;
Awad, M. ;
Noeth, E. ;
Alharbey, R. A. ;
Rushdi, A. M. .
NEURAL NETWORK WORLD, 2022, 32 (01) :43-54
[49]   Radar signal recognition using Wavelet Transform and Machine Learning [J].
Walenczykowska, Marta ;
Kawalec, Adam .
2022 23RD INTERNATIONAL RADAR SYMPOSIUM (IRS), 2022, :492-495
[50]   Extraction of characteristic features of electrogastrographic signal using wavelet transform [J].
Swierczynski, Zbigniew ;
Guszkowski, Tomasz .
PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (01) :137-139