Adaptive sliding mode trajectory tracking control of robotic airships with parametric uncertainty and wind disturbance

被引:38
作者
Zheng, Zewei [1 ]
Sun, Liang [2 ]
机构
[1] Beihang Univ, Sch Automat Sci & Elect Engn, Res Div 7, Sci & Technol Aircraft Control Lab, Beijing 100191, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2018年 / 355卷 / 01期
基金
中国国家自然科学基金; 国家重点研发计划; 中国博士后科学基金;
关键词
PATH-FOLLOWING CONTROL; NEURAL-NETWORK APPROXIMATION; STRATOSPHERIC AIRSHIP; DESIGN;
D O I
10.1016/j.jfranklin.2017.11.004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An adaptive sliding mode trajectory tracking controller is developed for fully-actuated robotic airships with parametric uncertainties and unknown wind disturbances. Based on the trajectory tracking model of robotic airships, an adaptive sliding mode control strategy is proposed to ensure the asymptotic convergence of trajectory tracking errors and adaptive estimations. The crucial thinking involves an adaptive scheme for the controller gains to avoid the off-line tuning. Specially, the uncertain physical parameters and unknown wind disturbances are rejected by variable structure control, and boundary layer technique is employed to avoid the undesired control chattering phenomenon. Computer experiments are performed to demonstrate the performance and advantage of the proposed control method. (c) 2017 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:106 / 122
页数:17
相关论文
共 48 条
[1]  
Acosta M.Dominguez., 2007, P 11 INT C PIXE ITS, P1
[2]   Dynamic modeling of the airship with Mat lab using geometrical aerodynamic parameters [J].
Ashraf, M. Z. ;
Choudhry, M. A. .
AEROSPACE SCIENCE AND TECHNOLOGY, 2013, 25 (01) :56-64
[3]   Hover control of an UAV with backstepping design including input saturations [J].
Azinheira, Jose Raul ;
Moutinho, Alexandra .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2008, 16 (03) :517-526
[4]   Airship hover stabilization using a backstepping control approach [J].
Azinheira, Jose Raul ;
Moutinho, Alexandra ;
de Paiva, Ely Carneiro .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2006, 29 (04) :903-914
[5]   A backstepping controller for path-tracking of an underactuated autonomous airship [J].
Azinheira, Jose Raul ;
Moutinho, Alexandra ;
de Palva, Ely Carneiro .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2009, 19 (04) :418-441
[6]   An analysis and design method for linear systems under nested saturation [J].
Bateman, A ;
Lin, ZL .
SYSTEMS & CONTROL LETTERS, 2003, 48 (01) :41-52
[7]   Tracking control of trim trajectories of a blimp for ascent and descent flight manoeuvres [J].
Beji, L ;
Abichou, A .
INTERNATIONAL JOURNAL OF CONTROL, 2005, 78 (10) :706-719
[8]  
Cai ZL, 2005, APPL MATH MECH-ENGL, V26, P1072
[9]   Project AURORA: Infrastructure and flight control experiments for a robotic airship [J].
Carneiro de Paiva, Ely ;
Raul Azinheira, Jose ;
Ramos, Josue G., Jr. ;
Moutinho, Alexandra ;
Siliqueira Bueno, Samuel .
JOURNAL OF FIELD ROBOTICS, 2006, 23 (3-4) :201-222
[10]   Design of a multi-vectored thrust aerostat with a reconfigurable control system [J].
Chen, L. ;
Duan, D. P. ;
Sun, D. S. .
AEROSPACE SCIENCE AND TECHNOLOGY, 2016, 53 :95-102