Classification of incomplete feature vectors by radial basis function networks

被引:12
作者
Dybowski, R [1 ]
机构
[1] United Med & Dent Sch Guys & St Thomas Hosp, Dept Microbiol, Sch Med, Intens Care Unit,Div Med,Kings Coll, London SE1 7EH, England
关键词
incomplete data; Gaussian mixture models; radial basis functions; imputation; EM algorithm;
D O I
10.1016/S0167-8655(98)00096-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper describes the use of radial basis function neural networks with Gaussian basis functions to classify incomplete feature vectors. The method uses the fact that any marginal distribution of a Gaussian distribution can be determined from the mean vector and covariance matrix of the joint distribution. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1257 / 1264
页数:8
相关论文
共 19 条
[1]  
[Anonymous], 1997, Analysis of incomplete multivariate data
[2]  
Bishop C. M., 1995, NEURAL NETWORKS PATT
[3]  
Broomhead D. S., 1988, Complex Systems, V2, P321
[4]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[5]  
Everitt B. S., 1981, Finite mixture distributions, DOI 10.1007/978-94-009-5897-5
[6]   PROJECTION PURSUIT REGRESSION [J].
FRIEDMAN, JH ;
STUETZLE, W .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1981, 76 (376) :817-823
[7]   Layered Neural Networks with Gaussian Hidden Units as Universal Approximations [J].
Hartman, Eric J. ;
Keeler, James D. ;
Kowalski, Jacek M. .
NEURAL COMPUTATION, 1990, 2 (02) :210-215
[8]  
HAYKIN S, 1994, NEURAL NETWORKS COMP, P266
[9]  
KRZANOWSKI WJ, 1988, PRINCIPLES MULTIVARI, P206
[10]  
Little RJA., 1987, STAT ANAL MISSING DA