The superlinear convergence of a new quasi-Newton-SQP method for constrained optimization

被引:1
作者
Wei, Zengxin [2 ]
Liu, Liying [1 ]
Yao, Shengwei [2 ]
机构
[1] Liaocheng Univ, Dept Math Sci, Liaocheng 252059, Peoples R China
[2] Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Peoples R China
关键词
quasi-Newton-SQP method; SQP method; constrained optimization; superlinear convergence;
D O I
10.1016/j.amc.2007.07.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new variation of the quasi-Newton-SQP methods for constrained optimization is proposed. Under some suitable assumptions, the superlinear convergence of the new method has been established. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:791 / 801
页数:11
相关论文
共 11 条
[1]   ON THE LOCAL CONVERGENCE OF QUASI-NEWTON METHODS FOR CONSTRAINED OPTIMIZATION [J].
BOGGS, PT ;
TOLLE, JW ;
WANG, P .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1982, 20 (02) :161-171
[2]  
Clarke FH, 1983, OPTIMIZATION NONSMOO
[3]   NON-LINEAR PROGRAMMING VIA AN EXACT PENALTY-FUNCTION - ASYMPTOTIC ANALYSIS [J].
COLEMAN, TF ;
CONN, AR .
MATHEMATICAL PROGRAMMING, 1982, 24 (02) :123-136
[5]   LOCAL CONVERGENCE ANALYSIS FOR PARTITIONED QUASI-NEWTON UPDATES [J].
GRIEWANK, A ;
TOINT, PL .
NUMERISCHE MATHEMATIK, 1982, 39 (03) :429-448
[6]  
Powell M.J. D., 1978, Nonlinear Programming, V3, P27, DOI 10.1016/B978-0-12-468660-1.50007-4
[7]  
SUN W, 1995, J COMPUT MATH, V13, P250
[8]   Newton's method and quasi-Newton-SQP method for general LC1 constrained optimization [J].
Sun, WY .
APPLIED MATHEMATICS AND COMPUTATION, 1998, 92 (01) :69-84
[9]  
THOMAS FC, 1984, SOC IND APPL MATH, P11
[10]   The superlinear convergence of a modified BFGS-type method for unconstrained optimization [J].
Wei, ZX ;
Yu, GH ;
Yuan, GL ;
Lian, ZG .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2004, 29 (03) :315-332