The AOR iterative method for new preconditioned linear systems

被引:62
|
作者
Evans, DJ
Martins, MM
Trigo, ME
机构
[1] Univ Coimbra, Dept Math, P-3000 Coimbra, Portugal
[2] Loughborough Univ Technol, Parallel Algorithms Res Ctr, Loughborough LE11 3TU, Leics, England
[3] Inst Super Contabilidade & Adm Coimbra, Coimbra, Portugal
关键词
preconditioned iterative methods; spectral radius; accelerated overrelaxation method;
D O I
10.1016/S0377-0427(00)00447-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we apply the AOR method to preconditioned linear systems different from those considered in Evans and Martins (Internat. J. Comput. Math. 5 (1995) 69-76), Gunawardena et al. (Linear Algebra Appl. 154-156 (1991) 123-143) and Li and Evans (Technical Report No. 901, Department of Computer Studies, University of Loughborough, 1994). Our results show that some improvements in the convergence rate of this iterative method can be obtained. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:461 / 466
页数:6
相关论文
共 50 条
  • [41] Preconditioned Gauss-Seidel type iterative method for solving linear systems
    Cheng Guang-hui
    Huang Ting-zhu
    Cheng Xiao-yu
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2006, 27 (09) : 1275 - 1279
  • [42] THE MODIFIED PRECONDITIONED JACOBI METHOD FOR ITERATIVE SOLUTION OF LINEAR-SYSTEMS OF EQUATIONS
    EVANS, DJ
    OKEKE, CC
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1992, 44 (1-4) : 53 - 69
  • [43] PRECONDITIONED GAUSS-SEIDEL TYPE ITERATIVE METHOD FOR SOLVING LINEAR SYSTEMS
    程光辉
    黄廷祝
    成孝予
    Applied Mathematics and Mechanics(English Edition), 2006, (09) : 1275 - 1279
  • [44] ON EULER PRECONDITIONED SHSS ITERATIVE METHOD FOR A CLASS OF COMPLEX SYMMETRIC LINEAR SYSTEMS
    Li, Cheng-Liang
    Ma, Chang-Feng
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (05): : 1607 - 1627
  • [45] On preconditioned MQHSS iterative method for solving a class of complex symmetric linear systems
    Beibei Li
    Jingjing Cui
    Zhengge Huang
    Xiaofeng Xie
    Computational and Applied Mathematics, 2022, 41
  • [46] Preconditioned Gauss-Seidel type iterative method for solving linear systems
    Guang-hui Cheng
    Ting-zhu Huang
    Xiao-yu Cheng
    Applied Mathematics and Mechanics, 2006, 27 : 1275 - 1279
  • [47] On preconditioned MQHSS iterative method for solving a class of complex symmetric linear systems
    Li, Beibei
    Cui, Jingjing
    Huang, Zhengge
    Xie, Xiaofeng
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (06):
  • [48] The Block AOR Iterative Methods for Solving Fuzzy Linear Systems
    Najafi, H. Saberi
    Edalatpanah, S. A.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2012, 4 (04): : 527 - 535
  • [49] Systolic preconditioned algorithms for the iterative solution of linear systems
    Evans, DJ
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2002, 79 (08) : 911 - 921
  • [50] Improving AOR method for consistent linear systems
    Li, Yao-tang
    Li, Cui-xia
    Wu, Shi-liang
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (01) : 379 - 388