The AOR iterative method for new preconditioned linear systems

被引:62
|
作者
Evans, DJ
Martins, MM
Trigo, ME
机构
[1] Univ Coimbra, Dept Math, P-3000 Coimbra, Portugal
[2] Loughborough Univ Technol, Parallel Algorithms Res Ctr, Loughborough LE11 3TU, Leics, England
[3] Inst Super Contabilidade & Adm Coimbra, Coimbra, Portugal
关键词
preconditioned iterative methods; spectral radius; accelerated overrelaxation method;
D O I
10.1016/S0377-0427(00)00447-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we apply the AOR method to preconditioned linear systems different from those considered in Evans and Martins (Internat. J. Comput. Math. 5 (1995) 69-76), Gunawardena et al. (Linear Algebra Appl. 154-156 (1991) 123-143) and Li and Evans (Technical Report No. 901, Department of Computer Studies, University of Loughborough, 1994). Our results show that some improvements in the convergence rate of this iterative method can be obtained. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:461 / 466
页数:6
相关论文
共 50 条