NEW EXAMPLES OF MAXIMAL SURFACES IN LORENTZ-MINKOWSKI SPACE

被引:4
|
作者
Lopez, Rafael [1 ]
Kaya, Seher [2 ]
机构
[1] Univ Granada, Inst Matemat IEMath GR, Dept Geometria & Topol, E-18071 Granada, Spain
[2] Ankara Univ, Dept Math, Ankara, Turkey
关键词
maximal surface; Bjorling problem; circle; helix; COMPLETE MINIMAL-SURFACES;
D O I
10.2206/kyushujm.71.311
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the Bjorling formula in Lorentz-Minkowski space to construct explicit parametrizations of maximal surfaces containing a circle and a helix. For Frenet curves, the orthogonal vector field along the core curve is a linear combination of the principal normal and binormal vectors where the coefficients are hyperbolic trigonometric functions. In the particular case that these coefficients are constant, we obtain all rotational maximal surfaces. We investigate the Weierstrass representation of these surfaces.
引用
收藏
页码:311 / 327
页数:17
相关论文
共 50 条