A 3D finite element formulation describing the frictional behavior of rubber on ice and concrete surfaces

被引:29
|
作者
Huemer, T [1 ]
Liu, WN [1 ]
Eberhardsteiner, J [1 ]
Mang, HA [1 ]
机构
[1] Vienna Univ Technol, Inst Strength Mat, Vienna, Austria
关键词
friction; rubber; concrete; finite element method;
D O I
10.1108/02644400110387109
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The frictional behavior of rubber Materials on various contact surfaces is strongly affected by the contact pressure and the relative sliding velocity as well as the environmental temperature Based on a great number of experiments of rubber blocks moving on concrete and ice surfaces, a friction law for 3D contact analyses is presented in this paper It is characterized by the dependency on the contact pressure, sliding; velocity and the environmental temperature. The identification and correction of the parameters of this friction law were done by means of a least-square method followed by re-analyses of the respective experiments. Several examples are given in a numerical investigation of the frictional behavior of rubber materials.
引用
收藏
页码:417 / 436
页数:20
相关论文
共 50 条
  • [41] 3D finite element simulation of optical modes in VCSELs
    Rozova, Maria
    Pomplun, Jan
    Zschiedrich, Lin
    Schmidt, Frank
    Burger, Sven
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XX, 2012, 8255
  • [42] 3D finite element analysis of ultrasonically assisted turning
    Ahmed, N.
    Mitrofanov, A. V.
    Babitsky, V. I.
    Silberschmidt, V. V.
    COMPUTATIONAL MATERIALS SCIENCE, 2007, 39 (01) : 149 - 154
  • [43] Automated Finite Element Modelling of 3D Woven Textiles
    Zeng, X. S.
    Long, A. C.
    Clifford, M. J.
    Iniotakis, C.
    Probst-Schendzielorz, S.
    Schmitt, M. W.
    PROCEEDING OF THE THIRD WORLD CONFERENCE ON 3D FABRICS AND THEIR APPLICATIONS, 2010, : 222 - 226
  • [44] 3D finite element analysis of evaporative laser cutting
    Kim, MJ
    APPLIED MATHEMATICAL MODELLING, 2005, 29 (10) : 938 - 954
  • [45] Intraoperative 3D Finite Element Computation Using CUDA
    Strbac, Vukasin
    Vander Sloten, Jos
    Famaey, Nele
    6TH EUROPEAN CONFERENCE OF THE INTERNATIONAL FEDERATION FOR MEDICAL AND BIOLOGICAL ENGINEERING, 2015, 45 : 371 - +
  • [46] Abfraction: 3D analysis by means of the finite element method
    Geramy, A
    Sharafoddin, F
    QUINTESSENCE INTERNATIONAL, 2003, 34 (07): : 526 - 533
  • [47] A 3D mesoscopic frictional cohesive zone model for the steel-concrete interface
    Abbas, Mohammad
    Bary, Benoit
    Jason, Ludovic
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 237
  • [48] 3-D Finite Element Modeling of Fiber Reinforced Rubber Composites using a Rebar Element
    Jeong, Se-Hwan
    Song, Jung-Han
    Huh, Hoon
    Kim, Jin-Woong
    Kim, Jin-Young
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2006, 30 (12) : 1518 - 1525
  • [49] Hybrid Steel Fiber of Rigid Pavements: A 3D Finite Element and Parametric Analysis
    Al Harki, Bakhtiyar Q. Khawaja
    Al Jawahery, Mohammed S.
    Abdulmawjoud, Ayman A.
    COATINGS, 2022, 12 (10)
  • [50] Finite element modelling of 3D orthogonal cutting experimental tests with the Coupled Eulerian-Lagrangian (CEL) formulation
    Ducobu, F.
    Riviere-Lorphevre, E.
    Filippi, E.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2017, 134 : 27 - 40