Cohomology of wheels on toric varieties

被引:0
|
作者
Craw, Alastair [1 ]
Quintero Velez, Alexander [2 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Univ Valle, Dept Matemat, Cali, Colombia
基金
英国工程与自然科学研究理事会;
关键词
Cohomology of complexes; toric varieties; syzygies;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe explicitly the cohomology of the total complex of certain diagrams of invertible sheaves on normal toric varieties. These diagrams, called wheels, arise in the study of toric singularities associated to dimer models. Our main tool describes the generators in a family of syzygy modules associated to the wheel in terms of walks in a family of graphs.
引用
收藏
页码:47 / 79
页数:33
相关论文
共 50 条
  • [21] Vanishing theorems on toric varieties
    Mustata, M
    TOHOKU MATHEMATICAL JOURNAL, 2002, 54 (03) : 451 - 470
  • [22] PRIMITIVE COLLECTIONS AND TORIC VARIETIES
    Cox, David A.
    von Renesse, Christine
    TOHOKU MATHEMATICAL JOURNAL, 2009, 61 (03) : 309 - 332
  • [23] Toric degenerations of spherical varieties
    Alexeev V.
    Brion M.
    Selecta Mathematica, 2005, 10 (4) : 453 - 478
  • [24] An interpolation theorem in toric varieties
    Weimann, Martin
    ANNALES DE L INSTITUT FOURIER, 2008, 58 (04) : 1371 - 1381
  • [25] HYPERBOLA METHOD ON TORIC VARIETIES
    Pieropan, Marta
    Schindler, Damaris
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2024, 11 : 107 - 157
  • [26] Bayesian Integrals on Toric Varieties*
    Borinsky, Michael
    Sattelberger, Anna -Laura
    Sturmfels, Bernd
    Telen, Simon
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2023, 7 (01) : 77 - 103
  • [27] Cartier isomorphism for toric varieties
    Blickle, M
    JOURNAL OF ALGEBRA, 2001, 237 (01) : 342 - 357
  • [28] Quantum cohomology and toric minimal model programs
    Gonzalez, Eduardo
    Woodward, Chris T.
    ADVANCES IN MATHEMATICS, 2019, 353 : 591 - 646
  • [29] First syzygies of toric varieties and diophantine equations in congruence
    Pisón-Casares, P
    Vigneron-Tenorio, A
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (04) : 1445 - 1466
  • [30] Cohomology Rings of Toric Bundles and the Ring of Conditions
    Hofscheier J.
    Khovanskii A.
    Monin L.
    Arnold Mathematical Journal, 2024, 10 (2) : 171 - 221