RBF Neural Network Adaptive Sliding Mode Control Based on Genetic Algorithm Optimization

被引:0
作者
Zhao Jie [1 ]
Han Long [1 ,2 ]
Ren Sijing [1 ]
机构
[1] Heilongjiang Univ Sci & Technol, Sch Elect & Control Engn, Harbin 150022, Peoples R China
[2] Harbin Inst Technol, Harbin 150001, Peoples R China
来源
PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC) | 2016年
关键词
Sliding mode control; Chattering reduction; RBF Neural network; Genetic algorithm; trajectory tracing; SYSTEMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
RBF neural network adaptive sliding mode control strategy based on genetic algorithm optimization is proposed for the non-linearity and the parameter uncertainty of the robot manipulator and the influence of disturbance, friction and other factors. The sliding mode variable structure control is used to overcome the uncertainty of the system, considering the influence of the additional uncertain disturbance, the non-linearity part of the fraction, parameter variation and modeling errors and so on. RBF neural network online self-learning optimized by genetic algorithm for dynamic model of robot manipulator raises the global optimization efficiency and effectively solve the problems of the number of neurons nodes in the hidden layer and the value election of each parameter. The Simulink is carried out taking the trajectory tracking of the robot manipulator as an example. The results show that this method can effectively compensate the modeling errors, realize adaptive control of the robot manipulator with no accurate model, improve the system robustness to the external uncertain disturbance and effectively decrease the chattering of control system only using a sliding mode variable structure control. The method is effective and feasible.
引用
收藏
页码:6772 / 6775
页数:4
相关论文
共 11 条
  • [1] Non-singular terminal sliding mode control of rigid manipulators
    Feng, Y
    Yu, XH
    Man, ZH
    [J]. AUTOMATICA, 2002, 38 (12) : 2159 - 2167
  • [2] Sliding mode control with self-tuning law for uncertain nonlinear systems
    Kuo, Tzu-Chun
    Huang, Ying-Jeh
    Chang, Shin-Hung
    [J]. ISA TRANSACTIONS, 2008, 47 (02) : 171 - 178
  • [3] NEURAL-NET ROBOT CONTROLLER WITH GUARANTEED TRACKING PERFORMANCE
    LEWIS, FL
    LIU, K
    YESILDIREK, A
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1995, 6 (03): : 703 - 715
  • [4] Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks
    Lin, Chuan-Kai
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2006, 14 (06) : 849 - 859
  • [5] Enhanced fuzzy sliding mode controller for active suspension systems
    Lin, Jeen
    Lian, Ruey-Jing
    Huang, Chung-Neng
    Sie, Wun-Tong
    [J]. MECHATRONICS, 2009, 19 (07) : 1178 - 1190
  • [6] ADAPTIVE MOTION CONTROL OF RIGID ROBOTS - A TUTORIAL
    ORTEGA, R
    SPONG, MW
    [J]. AUTOMATICA, 1989, 25 (06) : 877 - 888
  • [7] TRACKING CONTROL OF NON-LINEAR SYSTEMS USING SLIDING SURFACES, WITH APPLICATION TO ROBOT MANIPULATORS
    SLOTINE, JJ
    SASTRY, SS
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1983, 38 (02) : 465 - 492
  • [8] A computed torque controller for uncertain robotic manipulator systems: Fuzzy approach
    Song, ZS
    Yi, JQ
    Zhao, DB
    Li, XC
    [J]. FUZZY SETS AND SYSTEMS, 2005, 154 (02) : 208 - 226
  • [9] VARIABLE STRUCTURE SYSTEMS WITH SLIDING MODES
    UTKIN, VI
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1977, 22 (02) : 212 - 222
  • [10] Adaptive inverse dynamics control of robots with uncertain kinematics and dynamics
    Wang, Hanlei
    Xie, Yongchun
    [J]. AUTOMATICA, 2009, 45 (09) : 2114 - 2119