Isotopy and geotopy for ternary rings of projective planes

被引:2
作者
Aschbacher, Michael [1 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
关键词
projective planes; ternary rings; isotopy;
D O I
10.1016/j.jalgebra.2005.06.041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the question of when two ternary rings coordinatize the same finite projective plane. Necessary and sufficient conditions are obtained for right quasifields and for right distributive linear rings whose multiplicative loop is a group. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:868 / 892
页数:25
相关论文
共 9 条
[1]  
ASCHBACHER M, LOOP RINGS WHOSE MUL
[2]   Projective planes, loops, and groups [J].
Aschbacher, Michael .
JOURNAL OF ALGEBRA, 2006, 300 (02) :396-432
[3]  
Bruck R. H., 1971, SURVEY BINARY SYSTEM
[4]  
Hall M., 1959, The Theory of Groups
[5]  
Hughes D.R., 1973, Projective Planes
[6]  
KANTOR W, 1974, DEDICATA, V3, P335
[7]   COMMUTATIVITY IN FINITE PLANES OF TYPE I-4 [J].
KANTOR, WM ;
PANKIN, MD .
ARCHIV DER MATHEMATIK, 1972, 23 (05) :544-547
[8]  
Kiechle H., 2002, LECT NOTES MATH, V1778
[9]  
NGUYEN T, LOOPS ENVELOPES