Interactive Supervision with t-SNE

被引:1
|
作者
Luus, Francois [1 ]
Khan, Naweed [1 ]
Akhalwaya, Ismail [1 ]
机构
[1] IBM Res, Armonk, NY 10504 USA
来源
PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON KNOWLEDGE CAPTURE (K-CAP '19) | 2019年
关键词
semi-supervised learning; active learning; dimensionality reduction;
D O I
10.1145/3360901.3364414
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Knowledge capture from human experts in domain-specific settings can benefit from incisive use of machine intelligence to reduce expended time and effort. Such a capability can be of significant value to deep learning, given its demand for large labeled data. We propose an ML-based system for interactive labeling of image datasets to speed up class attribution performed by domain experts. The tool visualizes feature spaces and makes it directly editable through online integration of applied labels. We propose realistic annotation emulation to evaluate the system design of interactive active learning, based on our improved semi-supervised extension of t-SNE dimensionality reduction. We contribute globally normalized attractions, semi-supervised repulsion, smoothed label integration, and parameter optimization in our improved t-SNE. Our active learning tool can significantly increase labeling efficiency compared to uncertainty sampling, and we show that less than 100 labeling actions are typically sufficient for good classification on a variety of specialized image datasets. Our contribution is unique given that it needs to perform dimensionality reduction, feature space visualization and editing, interactive label propagation, low-complexity active learning, human perceptual modeling, annotation emulation and unsupervised feature extraction for specialized datasets in a production-quality implementation.
引用
收藏
页码:85 / 92
页数:8
相关论文
共 50 条
  • [1] Conditional t-SNE: more informative t-SNE embeddings
    Bo Kang
    Darío García García
    Jefrey Lijffijt
    Raúl Santos-Rodríguez
    Tijl De Bie
    Machine Learning, 2021, 110 : 2905 - 2940
  • [2] Conditional t-SNE: more informative t-SNE embeddings
    Kang, Bo
    Garcia Garcia, Dario
    Lijffijt, Jefrey
    Santos-Rodriguez, Raul
    De Bie, Tijl
    MACHINE LEARNING, 2021, 110 (10) : 2905 - 2940
  • [3] Conditional t-SNE: More informative t-SNE embeddings
    Kang, Bo
    Garcia, Dario Garcia
    Lijffijt, Jefrey
    Santos-Rodriguez, Raul
    De Bie, Tijl
    2021 IEEE 8TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2021,
  • [4] t-viSNE: Interactive Assessment and Interpretation of t-SNE Projections
    Chatzimparmpas, Angelos
    Martins, Rafael M.
    Kerren, Andreas
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (08) : 2696 - 2714
  • [5] Wasserstein t-SNE
    Bachmann, Fynn
    Hennig, Philipp
    Kobak, Dmitry
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I, 2023, 13713 : 104 - 120
  • [6] A Review of t-SNE
    Jung, Sangwon
    Dagobert, Tristan
    Morel, Jean-Michel
    Facciolo, Gabriele
    IMAGE PROCESSING ON LINE, 2024, 14 : 250 - 270
  • [7] Graph Layouts by t-SNE
    Kruiger, J. F.
    Rauber, P. E.
    Martins, R. M.
    Kerren, A.
    Kobourov, S.
    Telea, A. C.
    COMPUTER GRAPHICS FORUM, 2017, 36 (03) : 283 - 294
  • [8] Visualization of SNPs with t-SNE
    Platzer, Alexander
    PLOS ONE, 2013, 8 (02):
  • [9] Accelerating Hyperbolic t-SNE
    Skrodzki, Martin
    van Geffen, Hunter
    Chaves-de-Plaza, Nicolas F.
    Hollt, Thomas
    Eisemann, Elmar
    Hildebrandt, Klaus
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (07) : 4403 - 4415
  • [10] Clustering with t-SNE, Provably
    Linderman, George C.
    Steinerberger, Stefan
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2019, 1 (02): : 313 - 332